
MECHENG 561 Final Project

Valerie Chen, Jonathan Zarger

April 17, 2018

1 Abstract

The plant we controlled for this project was a model of a Segway. A Segway is a personal trans-
portation vehicle that can use two wheels to balance, move forward, and turn. A rider can make it
translate forward or backward by leaning in those respective directions. The Segway is a different
presentation of the inverted pendulum problem. We constrained the system to one dimensional
lateral motion (no turning) to simplify the model and implemented closed loop control to stabilize
the system. The plant input was voltage to the wheels and the plant outputs were the rider angle
and Segway lateral position. Disturbances we considered were voltage disturbances and torque
disturbances applied to the motors.

We simulated the model and two different controllers with Simulink and used MATLAB plots to
show the results. The first controller was an inner-loop/outer-loop architecture that was robust to
voltage disturbances but had a long settling time and a high rise time. The second controller was a
LQR controller/estimator/integrator augmentation system that provided a stable and reasonably
fast response that rejected disturbances (both voltage and torque) and noise.

2 Introduction

The Segway PT was invented by Dean Kamen and publicly released in December of 2001. It was
anticipated to revolutionize personal transportation, but fell short of this expectation. Regardless,
Segways are still used today by police forces, emergency medical services, and occasionally by the
general public as personal transportation devices. [1]

As mentioned before, the Segway is a realization of a classic example used in dynamics and controls
problems: the inverted pendulum. An inverted pendulum is a pendulum that has a center of mass
above its pivot point, making it an inherently unstable system that requires active balancing by
moving the pivot or applying a torque to the pendulum at the pivot point. [2] In the case of a
Segway, active balancing is achieved by moving the pivot point, and this is how a rider can make
a Segway translate forward or backward by leaning to shift their center of mass.

Lots of work has been done in the past surrounding the stabilization of inverted pendulum sys-
tems, but much of this is experimental as opposed to utilizing a model-based design approach. In
addition, much of this design assumes a continuous-time as opposed to a discrete-time system.

In this paper, we first outline a simplified dynamic model of a Segway in Section 3, Problem and
Modeling. Next, we develop two discrete-time controller architectures to stabilize the system in
Section 4, Solution and Discrete Controller Design. We simulate the controlled system and discuss
our results in Section 5, Results and Simulation, and then give a brief recap of our findings in the
final section.

1

2

3 Problem and Modeling

For the purposes of this project, we consider the Segway system dynamics derived in [3]. For the
dynamic model of the Segway, we first consider a simplified state space model of a DC motor.[

i̇
ω̇

]
=

[R
L

ke
L

km
IR

−ke
IR

] [
i
ω

]
+

[1
L 0
0 − 1

IR

] [
Va
τa

]
[3]

In this model, i is the motor current, ω is the motor speed, R is the terminal resistance, L is the
terminal inductance, ke is the back emf constant, km is the motor constant, IR is the inertia of the
motor, Va is the applied voltage, and τa is the load torque applied to the motor.

Next, we consider the free body diagram of one of the Segway wheels in Figure 1.

Figure 1: Free body diagram
of Segway wheel

In the figure, θw is the angle of rotation of the wheel, PR
and HR are the vertical and horizontal forces on the wheel
from the rider/handlebars, respectively, Mw is the mass of the
wheel, CR is the torque applied to the wheel by the mo-
tor, and HfR is the force of friction on the wheel. Note in
this model that weight force and normal force of the wheel
are neglected because the wheel does not accelerate verti-
cally.

Using Newton’s second law, we can say that

ΣFx = Mwẍ = HfR −HR (1)

ΣMo = Iwθ̈w = CR −HfRr (2)

as shown in [3]. In Equations 1 and 2, ΣFx is the sum of the forces in the x-direction (as defined
in the figure), ΣMo is the sum of moments about the center of the wheel (positive clockwise con-
vention), Iw is the moment of inertia of the wheel, and r is the radius of the wheel.

We also consider the free body diagram of the simplified mass representing the rider and the han-
dlebars of the Segway in Figure 2.

Figure 2: Free body diagram
of simplified mass represent-
ing rider and Segway handle-
bars

In the figure, θp is the angle of the mass with re-
spect to the vertical, CL and CR represent the torque
applied by the left and right motors, respectively, l is
the length, Mp is the mass, and HL and PL are the
horizontal and vertical forces on the mass from the left
wheel.

Applying Newton’s second law along the ΣFxp direction as shown
in the figure, we can write

ΣFxp = Mpẍ cos(θp) =

(HL +HR) cos θp + (PL + PR) sin θp −Mplθ̈p −Mpg sin θp (3)

ΣMo = Ipθ̈p =

− (HL +HR)l cos θp + (PL + PR)l sin θp + (CL + CR) (4)

3

as shown in [3]. By combining all of the above equations and making the assumption that the
Segway wheels roll without slip (x = rθw), we can write the nonlinear equations of motion as

(Mpl
2 + Ip)θ̈p −

2kmke
Rr

ẋ+
2km
R

Va +Mpgl sin θp = −Mplẍ cos θp (5)

2km
Rr

Va =

(
2Mw +

2Iw
r2

+Mp

)
ẍ+

2kmke
Rr2

ẋ+Mplθ̈p cos θp −Mplθ̇
2
p sin θp (6)

Linearizing the above equations and supposing that θp = π + φ, we can write the linearized state
space model of the system as

ẋ
ẍ

φ̇

φ̈

 =


0 1 0 0

0
2kmke(Mplr−Ip−Mpl2)

Rr2α

M2
pgl

2

α 0
0 0 0 1

0
2kmke(rβ−Mpl)

Rr2α
Mpglβ
α 0



x
ẋ
φ

φ̇

+


0

2km(Mplr−Ip−Mpl2)
Rrα
0

2km(rβ+Mpl)
Rrα

Va[3]

where

α = Ipβ + 2Mpl
2

(
Mw +

Iw
r2

)
(7)

β = 2Mw +
2Iw
r2

+Mp (8)

The states of this system are lateral position (x) and lateral velocity (ẋ) of the wheel and angular
position (φ) and angular velocity (φ̇) of the simplified mass representing the rider and handlebars.
The input to the plant is an applied motor voltage (Va). We believe that we can reasonably generate
or estimate measurements of all of the states of the system. The quantities x, ẋ, and ω can be
measured using rotary encoders (we will not model these dynamics for this project). The quantities
φ and φ̇ can be generated from inertial sensing by a 3-axis accelerometer and a 3-axis gyroscope.
The current, i, can be measured from a standard implementation of a current sensing circuit.

The real values for the variables chosen were estimated from quick research, and are as follows:
R = 2 Ω, L = 0.01 H, ke = 0.1 V·s

rad , km = 0.1 N·m
A , IR = 0.01 kg ·m2, Mw = 0.3 kg, Iw = 0.012

kg ·m2, r = 0.1 m, l = 2 m, Mp = 100 kg, Ip = 133 kg ·m2, and g = 9.81 kg·m
s2

.

4 Solution and Discrete Controller Design

We propose two controller architectures for this problem. The first will be an inner-loop/outer-loop
architecture, and the second will be a LQR control with an estimator and integrator augment.

4.1 Inner-Loop/Outer-Loop Controller

This controller was built using a dual loop architecture and classical control techniques. Two sep-
arate discrete-time controllers were developed to control the position of the cart (x) and the angle
of the mass on the Segway (φ). For simplicity and ease of modeling, only the plant of the Segway
was simulated, and disturbances were modeled as voltage disturbances.

The goal of this controller was to stabilize both x and φ when a unit step was applied to x. In
other words, when commanded to move forward 1 m, we wanted the Segway to do so with minimal
settling time, overshoot, and steady state error while keeping the rider as vertical as possible.

The Simulink model of this controller is shown in Figure 3.

4

Figure 3: Simulink model of dual-loop controller

The first step in this controller design was to discretize the system using the MATLAB command
c2d. A sample time of 1 kHz was chosen for this design. To design a controller for the system using
classical control techniques, we then transformed the system back into continuous time using the
bilinear transformation and the MATLAB command d2c. We then observed the root locus of the
transfer function relating φ(ν) to a voltage input, u(ν), where ν, the variable used in the bilinear

transform, is equal to 2000(z−1)
(z+1) . This root locus can be seen in Figure 4.

From the root locus, it is clear that the system is unstable for any gain. Hence, a lead controller
was added to pull the closed loop poles to the left half plane. The lead controller selected was
D(ν) = ν+5

ν+20 , and the root locus of the system multiplied by this controller is shown in Figure 5.
Using this root locus, a gain of 80 was selected to result in four stable closed loop poles, resulting
in a final controller of D(ν) = 80(ν+5)

ν+20 , or D(z) = 80z−79.6
z−0.9802 . With this controller, the closed-loop

discrete system had poles at 0.9802, 0.9963, 1, and 1.

Figure 4: Root locus of φ(ν)
u(ν) without controller Figure 5: Root locus of φ(ν)

u(ν) with controller

The results of this controller can be seen below in Section 5. After designing a stable controller for
φ, the plant with the lead controller was treated as one system, and a feedback controller for x was
designed to stabilize this system. The new plant that we were using to control x was found using
an equation from EECS 565: P̃xu = Pxu ∗ (1 + D(ν)Pφu)−1. [4] In this equation, P̃xu represents

5

the transfer function from u to x including the Segway plant and the controller we previously de-
signed for φ. The variable Pxu represents the transfer function from u to x when considering just
the Segway plant. The variable D(ν) represents the controller we designed above for φ, and Pφu
represents the transfer function from u to φ when considering just the Segway plant.

The root locus of P̃yx is shown below in Figure 6. We can see from the root locus that with a gain
of 0.3, we can achieve four stable closed loop poles, so a P Controller gain of 0.3 was added to the
x feedback loop as shown in Figure 3. With this controller, the closed-loop discrete system had
poles at 0.9830, 0.9989 ± 0.0008j, and 0.9993.

Figure 6: Root locus of P̃yx

The Simulink model also contains a block injecting voltage disturbances into the model. In reality,
these should be torque disturbances on the motor, but for ease of modeling, the motor model is
only considered in the controller designed in the next section. Hence, any torque disturbances are
simulated as voltage disturbances in this model.

4.2 LQR Control/Estimator/Integrator

This controller was built with techniques for design and analysis discussed in EECS 565: Linear
Feedback Control [4]. It will involve the use of an optimal controller and estimator designed
in discrete time, and an integrator augmentation to handle steady state error and disturbance
rejection. We first constructed the plant model in state space, and then added the integrator
augmentation. The following equation is the plant model, where Ap is the Segway model presented
above, Am is the model of the motor. The B and C matrices follow this trend as well.

Aaug =

Ap 0 0
0 Am 0
1 0 0



Baug =

BpBm
0


Caug = I7x7

The goal of this architecture is to design a controller that will be reasonably easy to tune, reliably
able to estimate states, robust to noise, and robust to disturbances. The integrator augmentation
is added to handle input disturbance, which is presented as a realistic issue for this system.

6

This generates a 7x7 A matrix including the integrator augmentation. The B matrix is for a single
input for the purpose of this design stage, and only includes the voltage input into the motor. The
torque disturbance input will be discussed later. We assume the sensor reading will be handled as
discussed in the earlier section, where a reasonable estimate can be obtained of each state.

This model is converted to a digital plant representation using the MATLAB c2d command. The
discrete time state space matricies will be labeled as Ad,Bd, Cd, and Dd. A sample rate of 1.5
kHz was chosen for this design, which we believe to be reasonable based on our experience with
embedded systems.

The first step is building the LQR controller. This is accomplished by using MATLAB’s dlqr
function on the discrete time model. The chosen weights for this controller were:

Q =



1 0 0 0 0 0 0
0 .1 0 0 0 0 0
0 0 1000 0 0 0 0
0 0 0 1000 0 0 0
0 0 0 0 .0001 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 100


R =

[
1
]

These weights were chosen from a combination of empirical testing and intuition behind how dif-
ferent states should be penalized. This generated a K vector that could be used for state feedback
control. Because of the integrator augmentation, K can be partitioned by K =

[
K1|K2

]
, where

K1 contains the state feedback gains and K2 contains the integrator gain.

The next step is to design the observer. We encountered stability issues with the MATLAB dlqe
and transposed dlqr commands, so we settled for a sub-optimal controller designed with transposed
place. The chosen poles were Pobs =

[
.05 −.05 .1 −.1 −.11 .11 .15

]
. The observer matrix

L was partitioned the same way as K into L1 and L2.

With both the controller and observer designed, the system was placed into a Simulink model,
which can be seen below in Figure 7. This model includes places to add an input disturbance, the
secondary torque input disturbance, model noise, and measurement noise. The state space block on
the top right contains a plant model with the motor model, and the“Estimator-Controller” block
contains the state space equations:

A = Ad −Bd ∗K1 − L1 ∗ Cd

B = L1

C =

[
K1

0

]

The plant model used in the “Estimator-Controller” state space block contains a discretized model
of the plant model with the motor model, but without the integrator augmentation.

In the Simulink model, the discrete system begins at the“Sampler” block taken from an EECS 561
sample model, and the system ends at the “Zero-Order Hold” block.

7

Figure 7: Simulink model of LQR controller and estimator with integrator

We chose to implement the integrator in discrete time as a trapezoidal integrator. It is more stable
than a Forward-Euler integrator, but less computationally expensive than a method like Runge-
Kutta.

The Simulink model also includes a saturation block on the motor plant input representing the
limitation on the motor voltage as the battery voltage. Quick research states that Segway battery
voltages can be 72 volts, so that value was set as the saturation value. It is assumed that the motor
can be driven in both directions by an H-Bridge, so the saturation bounds are -72 volts to +72
volts.

5 Results and Simulation

The primary performance objectives were related to tracking and disturbance. The input to the
closed loop system was a reference lateral position to move to while also keeping the inverted
pendulum part of the system stable. We also aimed to reject disturbance voltages and torques
injected into the motors.

5.1 Inner-Loop/Outer-Loop Controller Results

The dual loop controller provided a Segway response that would keep the rider upright as it moved,
but unfortunately the response time was rather slow. In these simulations, it took the Segway
around 15 seconds to travel 1 meter (as shown in Figure 8), which is a speed of approximately
0.07 m/s, whereas beginner Segways can travel at speeds of up to 2.7 m/s. [1] It was difficult to
decrease the rise time of the system without inducing large oscillations and unstable behavior.

Despite being slow, the system was robust to disturbances. In Figure 9, a step input of 1 m was
applied at time t = 0 and then a voltage disturbance of 3 V was applied at time t = 20. It does
take the Segway another 15-20 seconds to settle, but the Segway eventually does stabilize at a new
setpoint of 11 m. Even with this disturbance, the rider experiences an angular displacement of no
more than ±1 degree according to the simulation.

8

Figure 8: Step Input Figure 9: Step Input with Voltage Disturbance

5.2 LQR Control/Estimator/Integrator Results

This controller provided a stable and reasonably fast response that rejected disturbance and noise.
The controller was tested with several different input scenarios, which included a step input to x,
initial conditions on x and φ, and a ramp input to x. These same scenarios are then tested with
added model noise and measurement noise.

Figure 10 shows the response of the system to a step input of 1 m to x position at t = 1, a torque
disturbance of 25 N-m at t = 40, and a voltage disturbance of 5 V at t = 80. It can be shown that
the controller drove the Segway 1 m in under 10 s, and had a small and stable response to angle.
It also successfully rejected both of the disturbances with only a relatively small transient response.

Figure 11 shows the response of the system to an initial condition in φ. It shows that the φ initial
condition is rejected, and the response in x returns to 0.

Figure 12 shows the response of the system to an initial condition in x. It shows that the x initial
condition is rejected, and the response in φ returns to 0.

Figure 13 shows the response of the system to a ramp input in x. The ramp input is successfully
tracked. The value of φ stays positive during the tracking of the ramp input, as would be expected
during Segway motion.

A first observation is that there is certainly an issue with the scaling of φ for this model. The
trends appear to behave correctly, but the values appear to be at least an order of magnitude too
small. It is unclear whether this is an issue with the constants chosen during model design, or an
issue with the model itself.

9

Figure 10: Step Input Figure 11: Initial Condition in φ

Figure 12: Initial Condition in x Figure 13: Ramp Response

The following is the same four scenarios but with added process and measurement noise. The
noise was injected through Simulink’s “Band-Limited White Noise” block with 10-6 noise power in
measurements, and 10-3 noise power in the disturbances. The results in Figures 14, 15, 16, and 17
are nearly the same as the previously discussed plots, though with visible noise added. However,
this does not significantly change the stability or steady state behavior.

10

Figure 14: Step Input with Noise Figure 15: Initial Condition in φ with Noise

Figure 16: Initial Condition in x with Noise Figure 17: Ramp Response with Noise

6 Conclusion

In this paper, we examined a Segway, a two-wheeled personal transportation vehicle that can move
forward and backward depending on the direction a rider leans. We presented a dynamic model of
a Segway and designed two different controllers for this model using both classical control methods
(root locus) and modern control techniques (LQR). The dual-loop controller designed using the
root locus was robust to voltage disturbances, but had a relatively slow response time. The mod-
ern controller, on the other hand, provided a stable and fast response that rejected disturbances
(both voltage and torque) and noise. Possible extensions to this project could include reducing the
response time of the dual-loop controller, obtaining more accurate values for all the constants, and
modeling more of the sensor dynamics to make a more accurate, higher-fidelity model.

Valerie wrote the Introduction and Problem/Modeling sections of this report. She also designed
the inner-loop/outer-loop controller. Jon wrote the Abstract and designed the LQR/Estimator/In-
tegrator controller. Team members collaborated on the Conclusion.

11

References

[1] Wikipedia contributors. (2018, April 4). Segway PT. In Wikipedia,
The Free Encyclopedia. Retrieved 19:49, April 17, 2018, from
https://en.wikipedia.org/w/index.php?title=Segway PT&oldid=834119363.

[2] Wikipedia contributors. (2018, January 19). Inverted pendulum. In
Wikipedia, The Free Encyclopedia. Retrieved 20:17, April 17, 2018, from
https://en.wikipedia.org/w/index.php?title=Inverted pendulum&oldid=821341065.

[3] Optimal control of Segway personal transporter, Reza Babazadeh, Ataollah Gogani Khiabani,
Hadi Azmi. http://ieeexplore.ieee.org/document/7483129/.

[4] A First Graduate Course in Feedback Control, J.S. Freudenberg, EECS 565 Winter 2018 Book
Edition

A Code

A.1 Dual Loop Design

1 R = 2 ;
2 L = 0 . 0 1 ;
3 ke = 0 . 1 ;
4 km = 0 . 1 ;
5 IR = 0 . 0 1 ;
6 Mw = 0 . 3 ;
7 Iw = 0 . 0 1 2 ;
8 r = 0 . 1 ;
9 l = 2 ;

10 Mp = 100 ;
11 Ip = 133 ;
12 g = 9 . 8 1 ;
13

14 beta = 2∗Mw + 2∗Iw/ r ˆ2 + Mp;
15 alpha = Ip∗beta + 2 ∗ Mp ∗ l ˆ2 ∗ (Mw + Iw/ r ˆ2) ;
16

17 Ap = [0 , 1 , 0 , 0 ;
18 0 , 2∗km∗ke ∗(Mp∗ l ∗ r−Ip−Mp∗ l ˆ2) /(R∗ r ˆ2∗ alpha) , Mpˆ2∗g∗ l ˆ2/ alpha , 0 ;
19 0 , 0 , 0 , 1 ;
20 0 , 2∗km∗ke ∗(r ∗beta−Mp∗ l) /(R∗ r ˆ2∗ alpha) , Mp∗g∗ l ∗beta /alpha , 0] ;
21

22 Bp = [0 ;
23 2∗km∗(Mp∗ l ∗ r−Ip−Mp∗ l ˆ2) /(R∗ r ∗ alpha) ;
24 0 ;
25 2∗km∗(r ∗beta+Mp∗ l) /(R∗ r ∗ alpha)] ;
26

27 A = [Ap, z e r o s (4 , 2) ;
28 z e ro s (1 , 4) , R/L , ke/L ;
29 z e ro s (1 , 4) , km/IR , −ke/IR] ;
30

31

32 B = [Bp;1/L ; 0] ;
33 E = [ze ro s (5 , 1) ;−1/IR] ;
34 F = ze ro s (4 , 1) ;
35 Cp = [1 , 0 ,0 , 0 ;
36 0 , 0 , 180/ pi , 0] ;
37

38 C = [Cp, z e ro s (2 , 2) ;
39 z e ro s (1 , 4) , 1 0 ;

12

40 z e ro s (1 , 5) , 1] ;
41

42 D = zero s (4 , 2) ;
43

44 Dp = ze ro s (s i z e (Cp, 1) , s i z e (Bp , 2)) ;
45

46 T = 1/1000;
47

48

49 sy s con = s s (Ap,Bp ,Cp,Dp) ;
50 s y s d i s = c2d (sys con ,T, ’ zoh ’) ;
51 s y s d i s b l t = d2c (s y s d i s , ’ t u s t i n ’) ;
52 s y s d i s b l t t f = t f (s y s d i s b l t) ;
53

54 sim (’ des ign12 mdl ’)
55 subplot (2 , 1 , 1)
56 s t a i r s (tout , yout (: , 1))
57 t i t l e (’ Behavior o f Step Input to X with Voltage Disturbance ’)
58 y l ab e l (’X po s i t i o n (m) ’)
59 hold on
60 subplot (2 , 1 , 2)
61 s t a i r s (tout , yout (: , 2))
62 y l ab e l (’ Angle (degree s) ’)
63 x l ab e l (’Time (s) ’)
64

65 %% Design a Lead Compensator f o r phi
66 c l o s e a l l
67 f i g u r e
68 r l o cu s (s y s d i s b l t t f (2))
69 ax i s ([−5 5 −5 5])
70 f i g u r e
71 s = t f (’ s ’) ;
72 z = t f (’ z ’ , T) ;
73 r l o cu s (s y s d i s b l t t f (2) ∗(s+5)/(s+20))
74 ax i s ([−20 10 −10 10])
75 c o n t r o l l e r 1 = 80∗(s+5)/(s+20) ;
76 d i s c o n t r o l l e r = c2d (c on t r o l l e r 1 , T, ’ zoh ’)
77

78 %% Design a Lead Compensator f o r x
79 c l o s e a l l
80 % Figure out the ac tua l p lant (with phi c o n t r o l l e r)
81 S2 = 1/(1 + c on t r o l l e r 1 ∗ s y s d i s b l t t f (2)) ;
82 new plant = s y s d i s b l t t f (1) ∗S2 ;
83 new plant = minrea l (new plant) ;
84 f i g u r e
85 r l o cu s (new plant)
86 ax i s ([−7 9 −4 4])

A.2 LQR Design

1 R = 2 ;
2 L = 0 . 0 1 ;
3 ke = 0 . 1 ;
4 km = 0 . 1 ;
5 IR = 0 . 0 1 ;
6 Mw = 0 . 3 ;
7 Iw = 0 . 0 1 2 ;
8 r = 0 . 1 ;
9 l = 2 ;

10 Mp = 100 ;
11 Ip = 133 ;
12 g = 9 . 8 1 ;

13

13

14 beta = 2∗Mw + 2∗Iw/ r ˆ2 + Mp;
15 alpha = Ip∗beta + 2 ∗ Mp ∗ l ˆ2 ∗ (Mw + Iw/ r ˆ2) ;
16

17 Ap = [0 , 1 , 0 , 0 ;
18 0 , 2∗km∗ke ∗(Mp∗ l ∗ r−Ip−Mp∗ l ˆ2) /(R∗ r ˆ2∗ alpha) , Mpˆ2∗g∗ l ˆ2/ alpha , 0 ;
19 0 , 0 , 0 , 1 ;
20 0 , 2∗km∗ke ∗(r ∗beta−Mp∗ l) /(R∗ r ˆ2∗ alpha) , Mp∗g∗ l ∗beta /alpha , 0] ;
21

22 Bp = [0 ;
23 2∗km∗(Mp∗ l ∗ r−Ip−Mp∗ l ˆ2) /(R∗ r ∗ alpha) ;
24 0 ;
25 2∗km∗(r ∗beta+Mp∗ l) /(R∗ r ∗ alpha)] ;
26

27 A = [Ap, z e r o s (4 , 2) ;
28 z e ro s (1 , 4) , R/L , ke/L ;
29 z e ro s (1 , 4) , km/IR , −ke/IR] ;
30

31

32 B = [Bp;1/L ; 0] ;
33 E = [ze ro s (5 , 1) ;−1/IR] ;
34 %B = [B E] ;
35 F = ze ro s (4 , 1) ;
36 Cp = [1 , 0 ,0 , 0 ;
37 0 , 0 , 180/ pi , 0] ;
38

39 C = [Cp, z e ro s (2 , 2) ;
40 z e ro s (1 , 4) , 1 0 ;
41 z e ro s (1 , 5) , 1] ;
42 C = eye (6 , 6) ;
43

44 D = zero s (6 , 1) ;
45

46 Aaug = [A ze ro s (6 , 1) ; 1 z e r o s (1 , 6)] ;
47 Baug = [B(: , 1) ; z e r o s (1 , 1)] ;
48 Caug = [eye (7 , 7)] ;
49 Daug = ze ro s (7 , 1) ;
50

51 sy s con = s s (Aaug , Baug , Caug , Daug) ;
52

53 T = 1/1250;
54

55 s y s d i s = c2d (sys con ,T, ’ zoh ’) ;
56

57

58 [Ad Bd Cd Dd] = ssdata (s y s d i s) ;
59

60

61 Q = diag ([1 , . 1 , 1 0 0 0 , 1 0 00 , . 0 0 0 1 , 1 , 1 0 0]) ;
62 R = eye (1 , 1) ;
63

64 Kd = dlqr (Ad,Bd ,Q,R) ;
65

66

67 Kd1 = Kd(1 : 6) ;
68

69 Kd2 = abs (Kd(7)) ;
70 pobs = [. 0 5 −.05 . 1 −.1 −.11 . 11 . 1 5] ;
71

72 sys con2 = ss (A,B,C,D) ;
73 s y s d i s 2 = c2d (sys con2 ,T) ;
74 [Ad2 Bd2 Cd2 Dd2] = ssdata (s y s d i s 2) ;

14

75

76

77 Ld = place (Ad’ ,Cd’ , pobs) ’ ;
78 Ld1 = Ld (1 : 6 , 1 : 6) ;
79 Ld2 = (Ld (: , 7)) ;
80

81 vo l t a g e d i s t u rbanc e = [1 e−3] ;
82 %vo l t ag e d i s t u rbanc e = 0 ;
83 measurement noise = [1 e−5 1e−8 1e−8 1e−8 1e−8 1e−7] ;
84 %measurement noise = 0 ;
85 t f i n a l = 120 ;
86 t = 0 :T: t f i n a l ;
87 t s t e p = 1 ;
88 t d i s t = 10 ;
89 c l e a r r
90 f o r i = 1 : l ength (t)
91 i f t (i) <= t s t e p
92 r (i) = 0 ;
93 e l s e i f t (i) >= t s t e p
94 r (i) = 1 ;
95 end
96

97 end
98 t = t ’ ;
99 r = r ’ ;

100 x0=ze ro s (13 ,1) ;
101 sim (’ d e s i g n f i n a l ’) ;
102

103 f i g u r e (1)
104 c l f
105 subplot (2 , 1 , 1)
106

107 s t a i r s (tout , yout (: , 1))
108 t i t l e (’ Behavior o f Step Input To X with Disturbances ’)
109 y l ab e l (’X po s i t i o n (m) ’)
110 subplot (2 , 1 , 2)
111

112 s t a i r s (tout , rad2deg (yout (: , 3)))
113 y l ab e l (’ Angle (degree s) ’) ;
114 x l ab e l (’Time (s) ’) ;
115

116 t f i n a l = 30 ;
117 r = ze ro s (s i z e (r)) ;
118 x0=[0;0;−2 e − 2 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
119 sim (’ d e s i g n f i n a l ’) ;
120

121 f i g u r e (2)
122 c l f
123 subplot (2 , 1 , 1)
124 s t a i r s (tout , yout (: , 1))
125 t i t l e (’ Behavior with I n i t i a l Condit ion to Angle ’)
126 y l ab e l (’X po s i t i o n (m) ’)
127 subplot (2 , 1 , 2)
128 s t a i r s (tout , rad2deg (yout (: , 3)))
129

130 y l ab e l (’ Angle (degree s) ’) ;
131 x l ab e l (’Time (s) ’) ;
132

133 r = ze ro s (s i z e (r)) ;
134 x0 = [3 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
135 sim (’ d e s i g n f i n a l ’) ;
136

15

137 f i g u r e (3)
138 c l f
139 subplot (2 , 1 , 1)
140 s t a i r s (tout , yout (: , 1))
141 t i t l e (’ Behavior with I n i t i a l Condit ion to X ’)
142 y l ab e l (’X po s i t i o n (m) ’)
143 subplot (2 , 1 , 2)
144 s t a i r s (tout , rad2deg (yout (: , 3)))
145 y l ab e l (’ Angle (degree s) ’) ;
146 x l ab e l (’Time (s) ’) ;
147

148 f o r i = 1 : l ength (t)
149 i f t (i) <= t s t e p
150 r (i) = 0 ;
151 e l s e i f t (i) >= t s t e p
152 r (i) = t (i) ;
153 end
154 end
155

156 x0 = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
157 sim (’ d e s i g n f i n a l ’) ;
158

159 f i g u r e (4)
160 c l f
161 subplot (2 , 1 , 1)
162 s t a i r s (tout , yout (: , 1))
163 t i t l e (’ Behavior with Ramp Input ’)
164 y l ab e l (’X po s i t i o n (m) ’)
165 subplot (2 , 1 , 2)
166 s t a i r s (tout , rad2deg (yout (: , 3)))
167 y l ab e l (’ Angle (degree s) ’) ;
168 x l ab e l (’Time (s) ’) ;
169

170

171 r = sawtooth (t /(2∗ pi) , . 5) ;
172 t f i n a l = 40 ;
173 x0 = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
174 sim (’ d e s i g n f i n a l ’) ;
175

176

177 f i g u r e (5)
178 c l f
179 subplot (2 , 1 , 1)
180 s t a i r s (tout , yout (: , 1))
181 t i t l e (’ Behavior with Tr iang l e Wave Input ’)
182 y l ab e l (’X po s i t i o n (m) ’)
183 subplot (2 , 1 , 2)
184 s t a i r s (tout , rad2deg (yout (: , 3)))
185 y l ab e l (’ Angle (degree s) ’) ;
186 x l ab e l (’Time (s) ’) ;

	Abstract
	Introduction
	Problem and Modeling
	Solution and Discrete Controller Design
	Inner-Loop/Outer-Loop Controller
	LQR Control/Estimator/Integrator

	Results and Simulation
	Inner-Loop/Outer-Loop Controller Results
	LQR Control/Estimator/Integrator Results

	Conclusion
	Code
	Dual Loop Design
	LQR Design

