
University of Michigan

Final Report
Space 584 W18

Team Too
Mrigank Gupta

Abhiram Krishnan
Alan Rosenthal
Jacob Sigler

Jonathan Zarger

Final Report
Space 584 W18 Team Too

Contents

1 Introduction 1

2 Payload Subsystems 1
2.1 Communications . 1
2.2 Sensors . 1
2.3 Cameras . 2
2.4 GPS & Tracking . 3
2.5 Flight Termination Unit (FTU) . 3
2.6 Structures . 3

3 Mass & Power Budgets 8
3.1 Mass Budget . 8
3.2 Power Budget . 8

4 Printed Circuit Board Design 9

5 Flight Code 10

6 Testing and Verification 12
6.1 Calibration Tests . 12
6.2 Thermal Test . 13
6.3 Shock Test . 13
6.4 Endurance Test . 14
6.5 FTU Test . 14
6.6 Ground Station . 15
6.7 Car Chase . 15

7 Launch 15
7.1 Pre-Launch Operations . 15
7.2 Launch Day . 17

8 Data Collected 17
8.1 Flight Path . 18
8.2 Data Analysis . 20

9 Issues Encountered 22
9.1 Communications . 23
9.2 PCB . 23
9.3 Launch . 23

10 Conclusion 24

11 References 25

i

Final Report
Space 584 W18 Team Too

A Data Collected 26

B Printed Circuit Board 36
B.1 Hardware Architecture . 36
B.2 Printed Circuit Board Schematic . 37
B.3 Printed Circuit Board Top Layer . 38
B.4 Printed Circuit Board Bottom Layer . 39

C Launch SOP 40

D Flight Code 46
D.1 Flow Diagram . 46
D.2 Payload Code . 47
D.3 Header File . 67
D.4 FTU Code . 71

ii

Final Report
Space 584 W18 Team Too

List of Figures

1 A66 camera and heating pad (not to scale). 2
2 FTU circuit. 4
3 Major components modeled in NX. 5
4 Sample toolpaths produced in CATIA. 6
5 Inside of the payload box . 6
6 The fully assembled payload box . 7
7 Assembled Payload PCB . 10
8 Barometer calibration data. 12
9 Internal and external temperature during cold test. 13
10 Trackuino packets received by ground station during car chase. 16
11 Predicted balloon path from a simulation conducted the night before launch. 16
12 MicroTrak transmissions to APRS during flight. 18
13 MBuRST Trackuino transmissions to APRS during flight. 19
14 Team Too Trackuino transmissions to APRS during flight. 19
15 Flight track overlaid on Google Earth. MBuRST Trackuino is in yellow,

and Team Too Trackuino is in red. 20
16 Temperature during flight . 26
17 Battery during flight . 26
18 Humidity during flight . 27
19 Pressure during flight . 27
20 Altitude during flight . 28
21 Acceleration during flight . 28
22 Gyroscope during flight . 29
23 Magnetometer during flight . 29
24 Euler angles during flight . 30
25 Satellites during flight . 30
26 GPS Velocity during flight . 31
27 GPS Course during flight . 31
28 Snow flakes in the side-facing camera, roughly 5 minutes into flight 32
29 Side facing camera, roughly 10 minutes into flight 33
30 Down-facing camera in high winds, roughly 45 minutes into flight 34
31 Down-facing camera just before landing, roughly 1 hour 20 minutes into flight 35
32 Hardware Architecture Diagram . 36
33 Schematic . 37
34 Top Layer . 38
35 Bottom Layer . 39
36 Software Flow Diagram . 46

iii

Final Report
Space 584 W18 Team Too

List of Tables

1 Payload mass budget. 8
2 Balloon/train mass budget. 8

iv

Final Report
Space 584 W18 Team Too

Nomenclature

ADC Analog to Digital Converter

APRS Automatic Packet Reporting System

CAD Computer Aided Design

CNC Computer Numerically Controlled machining

FTU Flight Termination Unit

GFL Gorguze Family Laboratory

GPS Global Position System

HAB High Altitude Balloon

I2C Inter-Integrated Circuit

IMU Inertial Measurement Unit

LNA Low Noise Amplifier

MBuRST Michigan Balloon Recovery and Satellite Testbed

PCB Printed Circuit Board

SOP Standard Operating Procedure

SPI Serial Peripheral Interface

SRB Space Research Building

UART Universal Asynchronous Receive Transmit

v

Final Report
Space 584 W18 Team Too

1 Introduction

HABs provide a platform to study the atmosphere in-situ. The core purpose of this
project was to develop a HAB payload that measures atmospheric pressure, temperature,
and humidity. Additionally, the payload included a GPS module, IMU, and two cameras.
The payload sensors were mounted on a custom PCB. In order to communicate with the
ground, several redundant systems were used, all of which rely on APRS. The Trackuino
is an APRS tracker based on the Arduino Uno, and the MicroTrak is a commercial APRS
tracker built by Byonics. Two Trackuinos and one MicroTrak were integrated with the
payload train in several places. To ensure flight termination, an independent FTU was
developed to cut the payload from the balloon, and was designed to activate after the
expected balloon burst altitude.

2 Payload Subsystems

2.1 Communications

A single Trackuino, assembled by the team, was built into the payload package. The
Trackuino is an open source shield that sits on an Arduino Uno. It records GPS position
and transmits on the American APRS frequency of 144.39 MHz once per minute, starting
once position lock is acquired. The Trackuino, along with its battery, GPS antenna, and
APRS antenna, was built into the payload package.

2.2 Sensors

The payload contained a sensor suite consisting of the following components:

• Texas Instruments HDC1080 Humidity Sensor [4]

• TE Connectivity MS5607-02BA03 Pressure Sensor [6]

• Analog Devices TMP36 Temperature Sensor [7]

• PT103J2 Thermistor

• Invensense MPU9250 IMU [3]

These sensors were chosen for a variety of reasons. The HDC1080 humidity sensor was
chosen over the lab HIH4030 because it was designed for a 3.3V power supply, and it had
a slightly better precision (±2% vs ±3.5% RH). It also had a digital I2C interface instead
of an analog interface. The MS5607 pressure sensor was chosen over the lab MPX5100
because it was designed for a 3.3V power supply, it had a much better range of data
(1.5kPa vs 15kPa for the MPX5100), and it had a digital SPI interface instead of an analog
interface. The TMP36 temperature sensor tested in the lab was also used, except a surface

1

Final Report
Space 584 W18 Team Too

(a) Image of A66 with case and mount. (b) Image of heating pad.

Figure 1: A66 camera and heating pad (not to scale).

mount version was chosen instead of the provided through-hole version. The lab provided
PT103J2 thermistor was also used, except the analog signal was wired through a voltage
buffer instead of connecting it directly to the microcontroller. The Invensense MPU9250
IMU was chosen primarily because several team members had experience with it. It is a
9-degree of measurement system compared to the labs 3-degree of freedom accelerometer,
and it had a digital SPI interface instead of the lab provided ADXL335 analog interface.
All of these sensors were connected to the payload as separate surface mount components,
except for the thermistor, which was attached through a wiring harness.

2.3 Cameras

Two Apeman A66 Action Cameras were built into the payload, one facing downwards and
one facing to the side. They were installed with cases, for protection against moisture and
shock (as shown in Figure 1a), but without the base mount. Both cameras were configured
to record 1080p video. The A66 is rated to a minimum temperature of 10◦C, significantly
higher than the expected low temperature during flight of -40◦C. As a result, each camera
was wrapped with a 5V DC heating pad (COM-11288 on SparkFun, shown in Figure 1b),
powered by the primary payload batteries. These heaters kept the entirety of the payload
container warm during tests and flight.

As a result of an oversight in the payload mechanical design, the side camera was oriented
in portrait mode. This resulted in a less than convenient video from the flight. Beyond
this, there were no adverse effects caused by the design decision.

2

Final Report
Space 584 W18 Team Too

2.4 GPS & Tracking

The payload box included two GPS modules, one on the payload PCB and one on the
Trackuino.

The payload PCB used an Adafruit Ultimate GPS Breakout Board, mounted on the
motherboard with headers and a pair of threaded steel fasteners. The Ultimate GPS
Breakout is built around the MTK3339, and used the internal patch antenna. Latitude,
longitude, and altitude were logged from the Ultimate GPS Breakout.

The Trackuino used a SparkFun Venus GPS board, based on the Venus638FLPx receiver.
The receiver was connected to an embedded GPS antenna with an LNA. Once GPS lock
was acquired by the Venus, the Trackuino began transmitting its location over APRS once
per minute. If lock was lost, the Trackuino continued transmitting its last known position
every minute.

2.5 Flight Termination Unit (FTU)

The FTU is responsible for ensuring the payload train is cut from the balloon within
a reasonable time frame (2 hours from powering on the FTU, roughly 80 minutes into
flight). A nylon rope will connect the payload train to the balloon, and the FTU will be
placed at the top of the payload train. The FTU system is comprised of a microcontroller
timer (built on an Arduino Nano) and a circuit to run electrical current through a piece of
nichrome wire. After the microcontroller timer expires, it will turn on the circuit to run
current through the nichrome wire and cut through the rope.

The circuit design for the FTU is shown in the block diagram in Figure 2a, with the
fully assembled protoboard shown in Figure 2b. A power resistor is used to limit current
through the nichrome wire, and a pulldown resistor is used to ensure that the FTU remains
off when the Arduino Nano is not actively driving a signal to the MOSFET gate. The
code for the FTU can be found in Appendix D.4. The FTU uses the header file described
in Section 5 that describes the flight code and can be found in Appendix D.4.

Within the FTU package, components were primarily restrained using Velcro (protoboard,
battery), with secondary retention provided by duct tape (battery). Additional mechan-
ical support was provided by potting components on the protoboard with long leads -
the pulldown and power resistors - with hot glue. The FTU package was built out of
polystyrene foam, and for safety and environmental concerns, was tested to ensure that it
would melt/char from the heat of the nichrome, rather than actively burn.

2.6 Structures

Primary payload structures were machined from polystyrene foam and assembled using
hot glue. After assembly, the full box was wrapped with duct tape for protection against

3

Final Report
Space 584 W18 Team Too

(a) FTU block diagram. (b) Assembled FTU protoboard.

Figure 2: FTU circuit.

chipping and moisture. An image of the assembled payload, modeled in Siemens NX 11,
is shown in Figure 3a. Figures 3b, 3c, and 3d show major components that were also
modeled in NX. These models were used to determine the box dimensions required to
house all components and to assemble the major components within the box.

Initial designs called for the Trackuino and payload PCB to be restrained by threaded
fasteners screwed into nuts or inserts glued to the box. However, the foam material for
the box was unable to support this technique. A new design was revised to use Velcro to
fasten the Trackuino and PCB to the box.

The cameras were held in place by fitted pockets that were machined out using a router.
A fitted foam support would constrain the cameras (also machined using a router), and
was in turn held in by the box lid. The camera support was also used to mount the GPS
antenna and Trackuino battery. The GPS antenna was placed in a slot on top of the
support (facing the sky for optimal reception), and the battery was placed in a slot in the
middle of the support. Both locations were selected to optimize wire routing.

The thermistor and payload power switch were placed in holes in the walls of the package
and hot glued in. The key difficulty with the thermistor was the risk of shorting the leads -
this was addressed by insulating/hot gluing them prior to installation. The APRS antenna
was installed in a hole through the bottom of the payload, oriented vertically to maximize
the lateral range. It was taped to the box on the outside to prevent it from stressing the
coaxial cable.

Box manufacturing was facilitated with the use of a Practical CNC router owned by
the Department of Aerospace Engineering, located in the GFL. G-code was generated
using CATIA v5r26, and modified by hand for use with the BobCAD-Computer Aided
Manufacturing (BobCAD-CAM) software paired with the router. Sample toolpaths are
shown in Figure 4, and consist of a roughing pass, followed by one or two Z-level or
sweeping passes, depending on the needs of the part. All machining was completed with

4

Final Report
Space 584 W18 Team Too

(a) Payload box. (b) Apeman A66 action camera.

(c) Custom payload PCB. (d) Trackuino shield on Arduino Uno.

Figure 3: Major components modeled in NX.

5

Final Report
Space 584 W18 Team Too

(a) Box base. (b) Portion of internal camera support.

Figure 4: Sample toolpaths produced in CATIA.

Figure 5: Inside of the payload box

a 0.5” ball nose end mill. Several test pieces were machined first to verify camera fit, and
revisions were made to the camera CAD model based on the tests.

After machining, the individual parts were cut to size using a hot wire cutter, and as-
sembled with hot glue. Final fit checks were conducted, and additional holes/adjustments
were made by removing foam by hand with a screwdriver. The outsides of the box and lid
were then covered in two layers of duct tape for additional protection.

The inside of the completed box is shown in Figure 5. This shows the foam frame, and
the printed circuit board inside of the box. The thicker foam section at the bottom of the
picture is the camera housing. Figure 6 shows the outside of the fully assembled box.

6

Final Report
Space 584 W18 Team Too

Figure 6: The fully assembled payload box

7

Final Report
Space 584 W18 Team Too

3 Mass & Power Budgets

3.1 Mass Budget

Group Item Mass [g] Mass [lbm] Technique

Payload Board (with batteries) 165 0.364 Measured
Camera (x2) 260 0.573 Measured

Power Trackuino Battery 92 0.203 Measured
Structures Box+Switch+Thermistor 209 0.461 Measured

Lid 64 0.141 Measured
Internal support 12 0.026 Measured

Communications Trackuino 77 0.170 Measured
Whip antenna 48 0.106 Measured
GPS antenna 18 0.040 Measured

Misc Heater (x2) 16 0.035 Measured
Wiring/harnesses 50 0.110 Estimated
Velcro 150 0.331 Estimated

TOTAL 1161 2.560 Calculated
TRUE TOTAL 1010 2.227 Measured

Table 1: Payload mass budget.

System Total Mass [lbm] Source

FTU 0.41 Measured
Parachute 0.43 Measured
Radar Reflector 0.48 Measured
MicroTrak 1.28 Measured
MBuRST Trackuino 0.7 Estimated
Balloon 2.23 Measured
Lines/Clips 0.81 Measured
Team Too Payload 2.23 Measured
ENGR 100 Payload (x3) 3.00 Estimated Max

TOTAL 11.57 Calculated

Table 2: Balloon/train mass budget.

3.2 Power Budget

This section will show the process used to determine the power budget of the payload.
Battery capacities were determined empirically based on the endurance test. Rough cal-
culations were made to estimate the power draw of components on the payload board to
ensure that data could be logged through the entire flight.

8

Final Report
Space 584 W18 Team Too

The dominating power draw of the board is the heaters at approximately 4 Watts. The
remainder of the PCB components were measured to draw a maximum of 0.5 Watts for
a total power draw of 4.5 Watts. The payload used two 16850 Lithium-Ion cells wired
in series each with a rated capacity of 3.3 Amp-hours for a total capacity of 24.2 Watt-
hours. Using this figure, the batteries were calculated to theoretically last for 5.4 hours.
To account for the effect of low temperature at high altitude, this value was de-rated by
20% to achieve an estimated 4.3 hours of usable battery life, which was deemed sufficient
for flight.

This power budget was tested during the endurance test, with the PCB successfully record-
ing data for all 4 hours.

4 Printed Circuit Board Design

This section describes the PCB developed for logging sensor data. The PCB was designed
using the free open source tool KiCad. KiCAD was selected because it does not require
a license, so all group members could download the program and collaborate if necessary.
Additionally, several group members already had experience with the program.

The PCB schematic is split into several sub-circuit sections which are shown in Figure 32 in
Appendix B.1. The primary subsections are the microcontroller (ATSAMD21), barometer
(MS5607), IMU (MPU9250), SD Card, humidity sensor (HDC1080), and temperature
sensor (TMP36). The main design approach for each sub-circuit was to find an application
note for the component (usually provided in the component datasheet) and then design
the circuit around that recommendation. This strategy was used to design a schematic for
each sensor. The completed system schematic is shown in Figure 33 in Appendix B.2.

Similar to the schematic, the physical PCB layout is also roughly divided into the previ-
ously mentioned sub-circuits. Each component within a sub-section was placed near each
other and then all of these sub-sections were connected together. The result of this process
is shown in Figure 34 in Appendix B.3 and Figure 35 in Appendix B.4. These figures show
the copper layers, which connect the components together.

The PCB was ordered from a Chinese company, AllPCB. AllPCB has very low prices ($50
cheaper compared to OshPark) and quick manufacture times. The boards were received the
week of February 18th and assembled through spring brake. The board used mostly surface
mount components, so assembly was done using a lead paste and hot air station. During
this period initial debugging was conducted and several minor mistakes were identified.
These mistakes were fixed or ”bodged” and the PCB moved to the software development
phase.

The fully fabricated and assembled printed circuit board can be see below in Figure 7. It
shows all of the surface mount components, including the sensors, the microcontroller, and
the SD card in the top left corner. The heater power circuits, including the transistors

9

https://www.allpcb.com/

Final Report
Space 584 W18 Team Too

Figure 7: Assembled Payload PCB

and connectors, are shown in the top right corner. The battery connectors are shown in
the bottom right corner. The GPS and the unused radio slot are shown in the bottom left
corner.

5 Flight Code

The purpose of this section is to describe the structure and function of the flight code
used for the payload. The flight software in the payload was written in the Arduino
environment, which uses a combination of the C and C++ programming languages. The
target device the software was compiled for was the payload microcontroller, an Atmel
SAMD21 ARM system. The first point of note is Figure 36 in Appendix D.1, which is a
software flow diagram for the flight code. It visually describes the flow of the code through
the initialization process, and the main program loop that controls repeating actions. The
actual code is presented in Appendix D.2, with the header file in Appendix D.3.

The flight code, running on the microcontroller, interfaces with all of the sensors and the
SD card. It periodically collects data, processes it, and then writes it to the SD card so
that it can be accessed later.

Some of the sensor code was written with assistance from external libraries. These in-
cluded code for the humidity sensor [5], code for the IMU [2] and code for the GPS [8].
The barometer code was derived from the specification sheet [6], as was the code for the
temperature sensors.

10

Final Report
Space 584 W18 Team Too

On power-up, the microcontroller runs through an initialization routine. Most of the
critical microcontroller functions, like timers, clocks, and interrupts, are initialized be-
hind the scenes in the Arduino framework. After this initialization has completed, the
sensor connections are initialized. Several digital sensors were used, so several different
microcontroller communication peripherals must be initialized. This includes a SPI port
connection, an I2C port connection, and a UART connection. The ADC is also initialized
for the thermistor and battery voltage level, and it is set to a 12-bit resolution.

Each digital sensor has a specialized initialization routine, which is defined by the docu-
mentation for the sensor, or sample code found for the sensor. The SD card logging file
is also accessed to create a designation that a new set of logging data is being written for
the current power cycle.

The program then enters the ”loop” phase, where it will repeat the same tasks until it
is powered off. The program attempts to execute the following tasks, listed in order of
descending priority. If 10ms have passed since the last IMU sampling, it will attempt
to collect a data sample from the IMU over SPI. It will log this result and the current
time to a IMU data buffer. If 200 ms have passed since the last other sensor sampling, it
will attempt to collect data samples from all of the other sensors. This includes reading
from the humidity sensor over I2C, reading from the barometer over SPI, and reading
the battery voltage and two temperature values through the ADC. Each of these values
is put in its own dedicated buffer. After these sensors have been sampled, the program
will attempt to read any available data from the GPS. The program will then toggle the
heaters if it is time for them to toggle. The heater pattern is heater 1 on for 15 seconds,
both off for 15 seconds, heater 2 on for 15 seconds, both off for 15 seconds. If a complete
set of GPS data is found, it will be processed and the useful information will be stored.

Once all of the buffers are full and a GPS sample has been collected, the data is ready
to be sent to the SD card. The program runs a moving average filter on the barometer,
humidity, battery, and temperature data, and logs the IMU data as normal. The data
is accumulated into a C struct, typecast into a buffer of bytes, and then written to the
SD card as an array of bytes. This method of writing is significantly faster than storing
numbers as ASCII data, though it is much more difficult to parse it out later on the
ground. All of the buffers are then cleared. After all of the previous loop steps have been
checked or executed, the loop returns to the top.

On the ground, post flight, the binary data format written to the SD card is extracted
and converted to a CSV file that can be processed and plotted in MATLAB.

Also of note, our team used the University of Michigan EECS GitLab server for code
sharing and revision control. This was a valuable tool to handle a significant quantity of
flight code, processing code, and lab code.

11

https://gitlab.eecs.umich.edu

Final Report
Space 584 W18 Team Too

Figure 8: Barometer calibration data.

6 Testing and Verification

6.1 Calibration Tests

Calibration curves for the majority of the sensors were pulled from their respective speci-
fication sheets. In order to verify the curves, the sensors were tested in various conditions
and the results were compared to known values.

For the two temperature sensors and the humidity sensor, measurements were taken at
different conditions and the results were compared to a portable weather station.

To test the pressure sensor, it was placed inside a vacuum chamber which was pumped
down below the sensor’s minimum pressure rating. The chamber was then pumped up
slowly, giving the sensor time to respond. The pressure sensor initially provided in the
class bottomed out at 15 kPa, explaining the plateau at the base of the plot, shown in
Figure 8. It is also clear that there is a significant lag between the true pressure and
the measured pressure. The results of this initial calibration were the primary reason for
selection of a different barometer for the payload board.

12

Final Report
Space 584 W18 Team Too

Figure 9: Internal and external temperature during cold test.

6.2 Thermal Test

Thermal testing was required to verify the payload’s performance down to -40◦C, the lowest
expected flight temperature. The payload was fully assembled and placed in a cooler with
dry ice for one hour. Data was recorded throughout the course of the test and examined
to verify nominal performance. The most important of this data is the temperature data,
shown in Figure 9. The external temperature rapidly drops due to the dry ice, while the
internal temperature drop is well buffered by the heaters.

All components of the payload were fully operational for the entirety of the cold test.

6.3 Shock Test

Shock testing was used to verify that the payload could survive aerodynamic buffeting in
flight and impact with the ground upon landing. Two methods of shock testing were used.
First, the payload was thrown directly upwards, simulating a single large shock. Second,
the payload was thrown forward with nonzero angular velocity, simulating buffeting from
the jetstream.

Several components failed during the shock test. All were repaired and strengthened to

13

Final Report
Space 584 W18 Team Too

ensure that they could withstand flight.

• The GPS unit on the payload board was originally supported by nylon standoffs.
Both standoffs sheared during the shock tests. They were replaced by threaded steel
fasteners and nuts.

• The batteries on the payload board fell out of their holders. The assembly SOP was
updated to include zip-tying the batteries to the holders.

• The Trackuino/APRS antenna coaxial cable sheared at the connector. The cable was
replaced and strain relieved. The antenna was also secured to the box to prevent it
from mechanically loading the cable.

• Two body ground solder joints on the Trackuino radio module broke. They were
re-soldered, and the radio module was hot glued to the Trackuino shield.

• The Arduino Uno fell out of its plastic holder. Threaded steel fasteners were added
to hold them together.

6.4 Endurance Test

The payload was fully assembled, and all components were powered on and left to collect
data for four consecutive hours. This test is based on the expected deployment time of the
payload of two hours (half an hour for preflight operations, and up to ninety minutes for
the flight), with a safety factor of two. The primary driver for the test is operation of the
Trackuino up until recovery. All payload systems, including sensors and heaters, operated
for the full duration of the test. One camera operated for about three hours, and the other
camera lasted 76 minutes. Both of these cameras satisfy the minimum requirement of one
hour, but only one was expected to last the full flight.

6.5 FTU Test

An FTU test was performed to confirm that it behaved as expected. The FTU box was
completely assembled, including the rope to cut, and that rope was clamped off the ground.
A timer was started to confirm that the FTU would activate two hours from powering on.
The FTU cut the rope at exactly two hours, as expected. A new timer was started to
confirm that the FTU would deactivate and cease powering the nichrome wire. After
exactly two minutes, the nichrome wire powered off. This successfully mitigates the risk
of causing fire or heat related damage if the FTU powers on from the ground. The team
also performed a quick test to confirm that the foam used for the FTU box would melt
when exposed to the heat of the nichrome instead of burning.

14

Final Report
Space 584 W18 Team Too

6.6 Ground Station

Significant debugging was required to ensure reliable operation of the ground station. It
failed to receive APRS packets from the Trackuinos and MicroTrak for two tests, after
which several team members worked to debug it by reading through the radio manual and
online documentation for the software used on the ground station. Several problems were
identified and corrected:

• The DIN 8 to DB9 cable was faulty and needed to be replaced.

• The DIN 8 side of the cable was plugged into the wrong port in the radio.

• The radio was not configured to transmit to the PC in KISS (Keep It Simple, Stupid)
mode.

After these issues were fixed, the ground station was successfully used for the car chase.
The knowledge gained from this process was also used to repair the MBuRST ground
station on launch day.

6.7 Car Chase

The car chase was successfully completed on March 31, 2018, after two previous failed
attempts. Packets received by the ground station during the test are shown in Figure
10. The test started at the SRB parking lot, went around the North Campus Diag, and
returned to the SRB parking lot. The numerous points in the parking lot are a result of
pretest debugging. Over the course of the test, no packets were dropped, and the chase
car occasionally was able to move within line of sight of the tracked car.

7 Launch

7.1 Pre-Launch Operations

The week prior to launch, Go/No-Go slides were created outlining the readiness of the
team. These slides included the status of all required tests, the current state of the
payload, balloon flight predictions, a mass budget and schedule for the flight day. They
were presented at a Go/No-Go meeting two days before flight, along with the the packing
checklist and assembly SOP. The day before flight, all items were packed per the checklist.
This checklist can be found as part of the Payload Assembly SOP in Appendix C.

Several launch simulations were also conducted, with Athens, MI being selected as the
launch site. This resulted in an expected landing location northeast of Britton, MI, as
shown in Figure 11. As the bird flies, this is a distance of 76 miles.

15

Final Report
Space 584 W18 Team Too

Figure 10: Trackuino packets received by ground station during car chase.

Figure 11: Predicted balloon path from a simulation conducted the night before launch.

16

Final Report
Space 584 W18 Team Too

7.2 Launch Day

On launch day, teams met an hour and a half before departure to pack up trailer with gen-
eral launch supplies. These supplies included helium tanks, pressure regulators, balloons,
a housing to hold the balloon during filling and various tools. Packing took a total of half
an hour, upon which teams awaited the arrival of ENGR 100 students. Once all personnel
were present and placed into cars, they began the drive to the launch site at Athens High
School in Athens, MI.

Teams arrived at Athens High School at approximately 3 PM and began unpacking payload
train supplies, such as the paracord and Velcro needed to build up the payload train. In
parallel, assembly began of a balloon housing used to contain the balloon during the fill
procedure. The housing was necessary because of high winds on launch day. Next, both
teams began organizing the ENGR 100 payloads which had been assigned to respective
payload trains. Each payload was secured using an orthogonal wrapping of para-cord.
The paracord was tied using a standard ”double” and ”double figure 8 loop” knots with
the ends taped to prevent untying. Once the ENGR 100 payloads were secured, tracker
payloads were added to the train, including a proprietary MBuRST tracker and MBuRST
built Trackuino and MicroTrak. These payloads were secured using a double wrapping of
Velcro. At this time balloon fill started and teams began payload assembly. Assembly of
the Team Too payload was time sensitive due to the limited battery life of the cameras.
Payload train 1 was ready first, and was launched on the first balloon. Once the second
payload was complete, and all items on the SOP were checked off, it was integrated into
payload train 2 using Velcro and paracord. Finally, the radar reflector, parachute, and
FTU were all attached to the payload. A safety line was run from the parachute to the
bottom of the payload train in case of a break in the main line. The payload train was
completed as the second balloon finished filling, and was launched approximately a half
hour after the first balloon.

Once both balloons were launched, the chase began. Team Too had one of the ground
stations, which relayed APRS info to aprs.fi. Consistent radio contact with payload train
two was maintained for a majority of the chase. Due to the very strong winds, the balloon
maintained a lead on the chase team for the entire flight and reached speeds upwards of
100 mph. Payload train 1 was recovered first at around 5:44 PM. Payload train 2 was
recovered shortly after at 6:06 PM.

Once the balloons were recovered, everyone returned to the SRB and unpacked the com-
ponents. MBuRST’s three trackers and all of the ENGR 100 payloads were also returned.

8 Data Collected

The payload successfully collected data during the flight. The data was collected from
aprs.fi and the SD card and post-processed, and will be shown below. Section 8.1 shows

17

Final Report
Space 584 W18 Team Too

Figure 12: MicroTrak transmissions to APRS during flight.

the path taken by the balloon throughout the flight. Section 8.2 will discuss the data that
follows. The plots of the collected data are shown in Appendix A, Figure 16 to Figure 27,
because of the quantity of space they occupy. This includes collected temperature data,
humidity data, battery voltage data, barometer data, and estimated altitude data. It will
also show the data collected from the IMU, and an estimate of Euler angles from the IMU.
The data from the GPS is shown in Appendix A as well, though it is mostly not useful.
It will also show a set of pictures collected from the cameras in the payload.

8.1 Flight Path

Figures 12, 13, and 14 show APRS tracks from aprs.fi from the trackers onboard the
balloon. Several features in these tracks are noteworthy:

• The MicroTrak antenna (Figure 12) was lost partway during the flight, explaining
the lack of packets partway through the flight.

• The payload Trackuino (Figure 14) did not acquire GPS lock until roughly ten
minutes into the flight. However, that GPS lock was shaky - it is offset from the
MBuRST Trackuino (Figure 13). Proper lock was acquired about ten minutes before
landing.

• The simulated balloon track was quite similar to the predicted track in Figure 11.
The predicted landing spot was northeast of Britton, near the intersection of Day
Rd and Far Rd. The actual landing site was southwest of Britton, off Samantha
Dr (near Sutton Rd). The straight line distance between the actual and predicted
landing locations was about 9 miles.

A three dimensional image of the flight path was also generated in Google Earth using data
from the MBuRST and payload Trackuinos, shown in Figure 15. This image clearly shows
where the balloon entered the jetstream (much wider spacing between APRS transmissions,

18

Final Report
Space 584 W18 Team Too

Figure 13: MBuRST Trackuino transmissions to APRS during flight.

Figure 14: Team Too Trackuino transmissions to APRS during flight.

19

Final Report
Space 584 W18 Team Too

Figure 15: Flight track overlaid on Google Earth. MBuRST Trackuino is in yellow, and
Team Too Trackuino is in red.

suggesting a high speed), and the location of balloon burst. In addition, it also shows the
differences between the two Trackuinos’ GPS locations up until the final descent, when
they start to coincide.

8.2 Data Analysis

This section will provide an overview of the interpretation of each set of collected data.
The plots below highlight the data in each stage of flight, including the ascent phase,
the descent phase, and the landed phase. The transition from ascent to descent phase
was determined as the point of absolute minimum pressure. The transition of descent
to landed was determined from a break in data logging when the payload lost power for
roughly three seconds as it rolled on the ground.

Figure 16 describes the internal and external temperatures logged during the flight through
the various stages of the flight. The internal temperature behaves as expected, where it
stays roughly constant during the ascent, drops during the descent, and then rises back

20

Final Report
Space 584 W18 Team Too

up after landing. The external temperature drops rapidly during ascent, also drops during
descent, and then rises back to the ambient starting temperature. There is an unexpected
event where the external temperature rises during the second half of the ascent phase. It
is believed that this happens as the self-heating effect from powering the thermistor to
generate a voltage begins to dominate the effect of the cooler air as the air density drops,
decreasing the heat that can be carried away by convection. Convection also explains the
temperature drop during descent: a large airspeed in cool air results in a relatively large
amount of heat being carried away from the payload.

Figure 17 describes the drop of the payload battery voltage over time. It is mostly not
noteworthy, beyond the observation that the the timing of the heaters can be seen in the
voltage dropout from the increased current draw.

Figure 18 describes the collected humidity data. It shows that the humidity drops to
zero during ascent, stays at zero for most of the flight, rises quickly during descent as
condensation forms, and then drops back down to the starting ground humidity.

Figure 19 shows the pressure during the flight. It shows as expected that the pressure drops
during the ascent phase, has a minimum of roughly 18 mbar, and then increases faster back
to the starting value during the descent phase. The pressure data has several artifacts in
it, which are believed to be a result of the algorithm provided in the sensor documentation.
There are many places in the algorithm where a small rounding or typecasting error could
compound into a much more significant error.

Figure 20 shows the estimated and measured altitudes during the flight from GPS data
and derived barometer data. The barometer data agrees with APRS logs, which showed an
apogee of nearly 90 000 ft. The altitude from the barometer is generated using barometric
formulas from the US Standard Atmosphere (1976). As can be seen, the altitude from the
GPS seems to be mostly inaccurate.

Figure 21 shows the measured acceleration over time on 3-axes. The plots highlight 0
g, -1 g, and 1 g, which are useful resting accelerometer values. The plot shows several
interesting events. The first is around 40 minutes into the ascent, where the winds pick
up and cause significantly oscillation. This lasts for nearly 5 minutes, and then it calms
significantly. This is presumably when the balloon enters the jet stream. Soon after, the
values of the accelerations seem to imply that the payload train is nearly sideways, which
the video seems to corroborate. The next is at roughly 53 minutes at the point of balloon
burst. Following the more relatively calm point just discussed, it then enters a much more
aggressive acceleration pattern. Next, the point of descent at around 80 minutes, roughly
3 seconds of data was lost on landing. This unfortunately included the most interesting
data at this stage, the accelerations on the actual ground collision. Finally, it is evident
that the balloon was found at 105 minutes when a new acceleration event begins.

Figure 22 shows the measured 3-axis angular velocity over time of the payload. It generates
nearly the same conclusions as those discussed in the previous section. One portion of
extra note is at roughly 45 minutes when the x-axis shows a near constant value for a few

21

Final Report
Space 584 W18 Team Too

minutes, nearly at the same time as the acceleration looks rotated. It does make sense
that for there to be a constantly different acceleration, it would have to be induced by
some kind of constant rotation from the wind.

Figure 23 shows the measured magnetometer data. This data is mostly useless visually,
but can be used in attitude determination algorithms.

Figure 24 shows Euler angles generated from a a Mahony filter, a commonly implemented
attitude determination algorithm (code in [1]). Unfortunately, from looking through the
data and from collective team experience with this particular type of attitude determina-
tion, the sampled data appears to be too noisy to get a good result from the algorithm.
From observing the recorded video, the motion also appears to be too fast and oscillatory
to get a reasonable result using this type of algorithm without better inertial sensors and
a better sensor configuration.

Figure 25 shows the number of available GPS satellites during the flight. Given what
seems to be a constant gain and loss of satellites, it seems to make sense that the GPS
data is mostly useless.

Figure 26 shows the GPS velocity recording. Most of the data appears to be lost or
incorrect. Figure 27 shows the GPS course heading, which gives the same conclusion.

Data was also collected from both of the cameras. Several pictures from the cameras are
included in Appendix A. The downward facing camera collected video for the entire flight.
The side facing camera only collected data for a part of ascent as the battery died about
ten minutes from lift-off (most of the power was expended waiting to launch). Figure 28
shows the side facing camera about 5 minutes from leaving the ground. It is just about to
enter the clouds, and snow flakes can be seen in the image. Figure 29 is a second picture
from the side facing camera, just before it died about ten minutes into the flight, showing
it above the clouds. Figure 30 is an image from the downward facing camera about forty
five minutes into flight, near the balloon burst. It shows that the payload train was nearly
sideways at this point in the flight. Figure 31 shows an image from the downward facing
camera about an hour and twenty minutes into the flight, just before landing. The videos
of the flight can be viewed from Google Drive. The downward facing video can be found
here, and the side facing video can be found here.

9 Issues Encountered

Various problems were encountered throughout the course of the project. Each issue was
addressed and resolved in a timely fashion to ensure a successful launch.

22

https://drive.google.com/open?id=10awaLHu0jP9HPgQBtc3lqkg7cDC1Msi6
https://drive.google.com/open?id=1iTd86aAU3562wxmN3dAS6bmZt2dof-Yp

Final Report
Space 584 W18 Team Too

9.1 Communications

There was difficulty with the ground station during the initial attempts to conduct a
car chase. Team Too members were able to successfully troubleshoot the ground station
and get it working for a second attempt. Further discussion of the solutions that were
implemented is provided above in section 6.6.

9.2 PCB

There were three major issues with the PCB, which are described below.

The most critical mistake was with the barometer’s communication protocol. The intention
was to communicate with the barometer over SPI, however, the barometer pin which
controls communication protocol configuration was set to the wrong voltage which put the
barometer into I2C mode. To fix this mistake, the barometer was lifted off the PCB and
connected a thin wire underneath the chip to the correct voltage. The chip was then hot
glued to the PCB for structural support.

The next mistake was an issue with the battery connection. It was unclear in the docu-
mentation which parts of the battery connector were attached to the battery terminals,
and which were for mounting. They were swapped incorrectly in the design, and had to
be corrected with external wires.

The other major mistake regarding the PCB was the FTU circuit. The FTU circuit was
initially built into the payload PCB, however, it was later realized that the FTU needed
to be in its own package. To fix this, an independent FTU was implemented, but the
board was still left with wasted weight and board space. This mistake did clear up a
critical misunderstanding of the payload train, which was important for subsequent labs
and launch. Eventually, this turned out to be a positive, as the second heater was able to
use the FTU connector for power.

9.3 Launch

The major issue during launch was with ground station logistics. During the first launch
date, there were two ground stations, one with the MBuRST team and one with Team
Too. Once the first balloon was launched, one of the ground stations was asked to begin
pursuit, however, both ground stations needed to stay for the launch of the second balloon.
MBuRST was using a proprietary tracker, which could only track their payload on the
second balloon, while Team Too needed to stay with the second payload train until launch.
As a result, neither ground station left with the first balloon. To fix this in the future,
ground station logistics and chase car assignments need to be determined prior to balloon
launch.

23

Final Report
Space 584 W18 Team Too

10 Conclusion

In conclusion, the team was able to successfully design, build, and fly a custom payload
on a high altitude balloon. A printed circuit board was designed and integrated into a
custom box, subjected to thermal and mechanical shock tests, and was successfully flown
and recovered. The payload successfully recorded inertial, pressure, GPS, humidity, and
temperature data for the duration of the flight. All trackers worked well after initial
troubleshooting and every payload on the train was recovered. Overall, the team learned
a great deal from this project and had fun doing so.

24

Final Report
Space 584 W18 Team Too

References

[1] Open source IMU and AHRS algorithms, x io Technologies. July 31, 2012. http:

//x-io.co.uk/open-source-imu-and-ahrs-algorithms/

[2] Invensense MPU-9250 SPI Library, Brian Chen. May 16, 2017. https://github.com/
brianc118/MPU9250

[3] MPU-9250 Product Specification Revision 1.1, Invensense. June 20, 2016. https://
www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

[4] HDC1080 Low Power, High Accuracy Digital Humidity Sensor with Temperature
Sensor, Texas Instruemnts. January 2016. http://www.ti.com/lit/ds/symlink/

hdc1080.pdf.

[5] Arduino Library for ClosedCube HDC1080, ClosedCube. February 14, 2018. https:
//github.com/closedcube/ClosedCube_HDC1080_Arduino

[6] MS5607-02BA03 Barometric Pressure Sensor, with stainless steel cap, TE Connectiv-
ity, June 2017. http://www.te.com/commerce/DocumentDelivery/DDEController?
Action=srchrtrv&DocNm=MS5607-02BA03&DocType=Data+Sheet&DocLang=English

[7] Low Voltage Temperature Sensors, Texas Instruments. 2015. http://www.analog.

com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf

[8] TinyGPSPlus, Mikal Hart. February 3, 2018. https://github.com/mikalhart/

TinyGPSPlus

25

http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://github.com/brianc118/MPU9250
https://github.com/brianc118/MPU9250
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.ti.com/lit/ds/symlink/hdc1080.pdf
http://www.ti.com/lit/ds/symlink/hdc1080.pdf
https://github.com/closedcube/ClosedCube_HDC1080_Arduino
https://github.com/closedcube/ClosedCube_HDC1080_Arduino
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5607-02BA03&DocType=Data+Sheet&DocLang=English
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5607-02BA03&DocType=Data+Sheet&DocLang=English
http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
https://github.com/mikalhart/TinyGPSPlus
https://github.com/mikalhart/TinyGPSPlus

Final Report
Space 584 W18 Team Too

A Data Collected

Figure 16: Temperature during flight

Figure 17: Battery during flight

26

Final Report
Space 584 W18 Team Too

Figure 18: Humidity during flight

Figure 19: Pressure during flight

27

Final Report
Space 584 W18 Team Too

Figure 20: Altitude during flight

Figure 21: Acceleration during flight

28

Final Report
Space 584 W18 Team Too

Figure 22: Gyroscope during flight

Figure 23: Magnetometer during flight

29

Final Report
Space 584 W18 Team Too

Figure 24: Euler angles during flight

Figure 25: Satellites during flight

30

Final Report
Space 584 W18 Team Too

Figure 26: GPS Velocity during flight

Figure 27: GPS Course during flight

31

Final Report
Space 584 W18 Team Too

Figure 28: Snow flakes in the side-facing camera, roughly 5 minutes into flight

32

Final Report
Space 584 W18 Team Too

Figure 29: Side facing camera, roughly 10 minutes into flight

33

Final Report
Space 584 W18 Team Too

Figure 30: Down-facing camera in high winds, roughly 45 minutes into flight

34

Final Report
Space 584 W18 Team Too

Figure 31: Down-facing camera just before landing, roughly 1 hour 20 minutes into flight

35

Final Report
Space 584 W18 Team Too

B Printed Circuit Board

B.1 Hardware Architecture

Figure 32: Hardware Architecture Diagram

36

Final Report
Space 584 W18 Team Too

B.2 Printed Circuit Board Schematic

Figure 33: Schematic

37

Final Report
Space 584 W18 Team Too

B.3 Printed Circuit Board Top Layer

Figure 34: Top Layer

38

Final Report
Space 584 W18 Team Too

B.4 Printed Circuit Board Bottom Layer

Figure 35: Bottom Layer

39

Final Report
Space 584 W18 Team Too

C Launch SOP

Day Before

Materials

• White Trackuino battery

• White FTU battery

• Black payload batteries (x2)

• Ground station battery

• microSD card (x3)

Procedure

• Fully charge Trackuino battery

• Fully charge both payload batteries

• Fully charge both cameras

• Fully charge ground station battery

• Wipe all microSD cards

• A66 camera microSD card

• Not A66 camera microSD card

• Payload microSD card

• Install microSD cards in payload board and both cameras

Day Of

Materials

• FTU

� White FTU battery

� FTU protoboard

� FTU box

� FTU lid

� Nichrome

• Payload

� Black payload batteries (x2)

40

Final Report
Space 584 W18 Team Too

� Payload board

� Trackuino

� White trackuino battery

� Cameras (x2)

� microSD card (x3)

� Payload box/lid

� Payload internal support

� Heater (x2)

� Trackuino GPS antenna

� Trackuino APRS antenna with SMA cable

� Velcro straps

� Duct tape

� Small zip ties

� Spare velcro

• Tools

� Crescent wrench for helium bottle

� Allen keys

� Screwdriver for electronics

� Multimeter

� Pliers

� Scissors

� Duct tape

� Electrical tape

� Masking tape

� Hot glue gun

� Hot glue

� Scale

� Solder

� Soldering iron

41

Final Report
Space 584 W18 Team Too

� Wire

� Wire cutters

� Wire strippers

• Payload support

� Payload battery charger

� FTU/Trackuino battery charger

• Train

� Balloon

� Parachute

� Radar reflector

� Zip ties (for balloon)

� 10 paracord lines for connecting components

� 20 carabiners/clips

• Balloon filling

� 4x bottles (two balloons)

� Regulator/fill valve

� Dolly

� Crescent wrench

� Filling hose

� Vinyl gloves (x4)

� Leather gloves for string (¿=3)

� Kite nylon rigging string

� Pre-made rigging harnesses, with key rings (¿=6)

� Key rings (x24)

� Ground tarp

� Balloon tarp

� “House”

� Zip ties

� Full roll of duct tape

42

Final Report
Space 584 W18 Team Too

� Safety glasses (x3)

• Ground Station

� Kenwood TM-D710 radio display/transceiver

� Laptop/charger

� Inverter

� APRS antenna

� GPS antenna

� Cabling for radio to laptop (DIN8 to DB9, serial to USB converter, USB cable)

Payload/Trackuino Assembly

� Place batteries in payload board, taking the utmost care to install them in the correct
orientation. This should be verified by a second person.

� Add zipties around the batteries.

� Place the payload board in the box. Hot glue may be needed to attach the hook side
of the Velcro to the box. Push the board down on the Velcro, and wiggle it around
laterally. Gently pull up on the board to verify that it is secure.

� Turn on cameras and start recording. Install them in the payload box. The one on
the side should be installed first.

� Wrap heaters snugly around cameras.

� Attach connectors to the board.

� One heater to the HEAT connector

� One heater to the FTU connector

� Thermistor to the TMP connector

� Switch connector with two wires to the SWITCH connector

� Switch connector with one wire to the TP connector

� Route wiring around edges of the box, and tape to walls.

� Attach the Trackuino to the lid, following the Velcro pattern.

� Install the buzzer in the Trackuino, taking care to match the polarities. Tug gently
to ensure that it is secure.

� Attach the GPS antenna to the red GPS module on the Trackuino.

� Attach the APRS antenna to the SMA connector on the Trackuino board through
an SMA coaxial cable.

43

Final Report
Space 584 W18 Team Too

� Attach the white Trackuino battery to the Trackuino.

� Slide the Trackuino battery into the slot in the payload internal support.

� Slide the Trackuino GPS antenna into the slot in the top of the payload internal
support.

� Slide the Trackuino APRS antenna into the hole at the bottom of the payload box.

� Gently slide the internal support into the payload box over the cameras/heaters,
being careful to not press any of the camera buttons. Keep the lid close to avoid
ripping wires out of the Trackuino.

� Pull the APRS antenna through the hole until most of the antenna is outside. Tape
the SMA coaxial cable to the side of the payload box.

� Place the lid on the box.

� Wrap tape around the base of the APRS antenna.

� Wrap the box with Velcro straps in both directions.

� Hold the box with the APRS antenna facing downwards until the Trackuino buzzer
starts to beep, indicating GPS lock.

� The payload is now ready for integration with the payload train.

44

Final Report
Space 584 W18 Team Too

45

Final Report
Space 584 W18 Team Too

D Flight Code

D.1 Flow Diagram

Figure 36: Software Flow Diagram

46

Final Report
Space 584 W18 Team Too

D.2 Payload Code

1 /∗
2 ∗ f l i g h t c o d e . ino
3 ∗ This f i l e conta in s the Arduino main program code to handle in− f l i g h t ta sk s

.
4 ∗
5 ∗ Tasks to complete :
6 ∗ Sample MPU9250 : 10Hz , SPI , C i r cu l a r Buf f e r
7 ∗ Sample GPS: 1Hz , S e r i a l , Proce s s ing In tense Task
8 ∗ Sample Humidity : 5Hz , I2C , MAF, C i r cu l a r Buf f e r
9 ∗ Sample TMP36: 5Hz , ADC, MAF, C i r cu l a r Buf f e r

10 ∗ Sample Thermistor : 5Hz , ADC, MAF, C i r cu l a r Buf f e r
11 ∗ Sample Barometer : 5Hz , SPI , Process , MAF, C i r cu l a r Buf f e r
12 ∗ Sample Battery Voltage : 5Hz ADC, MAF, C i r cu l a r Buf f e r
13 ∗
14 ∗ Write Data to SD Card : 1Hz , SPI
15 ∗ Write or Read data to Radio 1Hz , SPI
16 ∗ Write or Read data to SD f o r r e s e t handl ing (100mHz write , read on power

on)
17 ∗
18 ∗ Clear Watchdog : Handles c ra she s . Ca l l whenever p o s s i b l e .
19 ∗ Enable/Disab le FTU from timer or command (use RTC f o r t imer) , 1Hz
20 ∗ Enable/Disab le Heater from timer or TMP36 feedback (use RTC f o r t imer) , 1

Hz
21 ∗ Enable/Disab le Status LEDs , Lowest P r i o r i t y
22 ∗/
23

24 //
−−−

25 // Inc lude s
26 #inc lude <SPI . h> // Bu i l t in Arduino SPI l i b r a r y
27

28 //The standard Arduino SD l i b r a r y i s a c t ua l l y b u i l t on t h i s l i b r a r y
29 //Using the sma l l e r v e r s i on to reduce overhead and speed up wr i t e speeds
30 // Library ZIP inc luded in g i t repo
31 // I n s t a l l with Sketch>Inc lude Library>Add . ZIP Library
32 #inc lude <SdFat . h> // I n s t a l l e d SD Library
33

34 // F i l e with #de f i n e cons tant s
35 #inc lude ” f l i g h t c o n f i g . h”
36

37 #inc lude ” s r c / t inygps /TinyGPS++.h” //Downloaded GPS l i b r a r y
38 #inc lude ” s r c /mpu9250/MPU9250 . h” //Downloaded IMU l i b r a r y
39 #inc lude ” s r c /hdc1080/ClosedCube HDC1080 . h” //Downloaded humidity s enso r

l i b r a r y
40 #inc lude ” s r c / r t c /RTCZero . h” //Arduino o f f i c i a l l i b r a r y f o r r ea l−time c l o ck
41 //End Inc lude s
42 //

−−−

43

47

Final Report
Space 584 W18 Team Too

44 //
−−−

45 //Macros
46 #i f d e f SERIAL DEBUG
47 #de f i n e debug (X) SerialUSB . p r i n t l n (X)
48 #e l s e
49 #de f i n e debug (X) do {} whi le (0) // compi les to noop or opt imized out
50 #end i f
51 //End Macros
52 //

−−−

53

54 //
−−−

55 //Global Objects
56 ClosedCube HDC1080 hdc1080 ; //I2C Humidity s enso r
57 MPU9250 mpu(MPU SPI CLOCK, MPU SS PIN) ; //SPI IMU
58 TinyGPSPlus gps ; // S e r i a l GPS
59 RTCZero r t c ; // I n t e r na l Real−Time Clock
60

61 SdFat sd ; //SD handler
62 SdFi le l o g f i l e ; //Log f i l e handler
63 SdFi le c o n f i g f i l e ; //Config f i l e handler
64 //End Global Objects
65 //

−−−

66

67 //
−−−

68 // St ruc t s
69 // Stucture f o r data to log on next SD c a l l
70 da t a t o l o g data ;
71

72 // St ruc ture to read and wr i t e from on power on or s t a t e l og
73 c o n f i g l o g c on f i g ;
74 //End St ruc t s
75 //

−−−

76

77 //
−−−

78 //Global Var i ab l e s
79

80 // Buf f e r po i n t e r s
81 u i n t 8 t mpu of f se t = 0 ;
82 u i n t 8 t s l ow o f f s e t = 0 ;

48

Final Report
Space 584 W18 Team Too

83

84 // Bu f f e r s to s t o r e data
85 //IMU bu f f e r s to r ed in log data s t r u c tu r e
86 f l o a t 3 2 t humid [SLOW SAMPLE RATE] ;
87 u in t 32 t tmp [SLOW SAMPLE RATE] ;
88 u in t 32 t therm [SLOW SAMPLE RATE] ;
89 f l o a t 3 2 t baro [SLOW SAMPLE RATE] ;
90 u in t 32 t batt [SLOW SAMPLE RATE] ;
91

92 //Current s t a t e o f FTU and heate r
93 u in t 32 t f t u s t a t e = 0 ;
94 u in t 32 t h e a t s t a t e 1 = 0 ;
95 u in t 32 t h e a t s t a t e 2 = 0 ;
96 //Last s to r ed temp , f o r feedback heat ing
97 f l o a t 3 2 t la s t temp = 0 ;
98

99 //Assorted t imers f o r spac ing func t i on execut ion time
100 u in t 32 t counter ;
101 u in t 32 t l a s t c a l l ;
102 u in t 32 t last mpu ;
103 u in t 32 t l a s t s l ow ;
104 u in t 32 t l a s t g p s ;
105 u in t 32 t t h i s c a l l ;
106 u in t 32 t l a s t h e a t ;
107 u in t 32 t l a s t f t u ;
108 u in t 32 t l a s t c o n f i g ;
109 u in t 32 t l a s t l e d ;
110 u in t 32 t f t u s t a r t = 0 ;
111

112 // Tr igger f o r l ogg ing to the SD card
113 u in t 16 t ready = 0x00 ;
114

115 // Status o f the SD card a f t e r opening
116 u i n t 8 t s d s t a tu s = 0 ;
117

118 // Sto r e s barometer c on f i gu r a t i on s e t t i n g s
119 u in t 16 t baro prom [8] ;
120

121 //Counter f o r time l e f t u n t i l FTU t r i g g e r
122 u in t 32 t ftu ms remain = TWOHOURSMS;
123

124

125 //End Global Var iab l e s
126 //

−−−

127

128 //
−−−

129 //Function Dec l a ra t i on s
130 void i n i t s p i () ;
131 void init mpu () ;

49

Final Report
Space 584 W18 Team Too

132 void i n i t g p s () ;
133 void in i t humid () ;
134 void i n i t b a r o () ;
135 void in i t tmp () ;
136 void i n i t s d () ;
137 void i n i t r a d i o () ;
138 void i n i t c o n f i g f i l e () ;
139 void i n i t r t c () ;
140 void i n i t l e d s () ;
141 void i n i t f t u () ;
142 void i n i t h e a t e r () ;
143

144 void in i t watchdog () ;
145

146 void c lear watchdog () ;
147

148 //End Function Dec l a ra t i on s
149 //

−−−

150

151 //
−−−

152 //Program Setup
153 void setup () {
154 #i f d e f SERIAL DEBUG
155 SerialUSB . begin (115200) ;
156 whi le (! SerialUSB) {}
157 #end i f
158 debug (”Here we go”) ;
159 debug (” S ta r t i ng i n i t ”) ;
160

161 //Assorted i n i t i a l i z a t i o n func t i on s f o r each f e a tu r e
162 i n i t s p i () ;
163 i n i t l e d s () ;
164 i n i t f t u () ;
165 i n i t h e a t e r () ;
166 in i t mpu () ;
167 i n i t g p s () ;
168 in i t humid () ;
169 i n i t b a r o () ;
170 i n i t tmp () ;
171 i n i t s d () ;
172 i n i t r a d i o () ;
173 i n i t c o n f i g () ;
174 i n i t r t c () ;
175

176 i n i t watchdog () ;
177

178 debug (”Done with i n i t ”) ;
179 debug (” S ta r t i ng Task Creat ion ”) ;
180

50

Final Report
Space 584 W18 Team Too

181 // Set up t imers
182 l a s t c a l l = m i l l i s () ;
183 last mpu = l a s t c a l l ;
184 l a s t s l ow = l a s t c a l l ;
185 l a s t g p s = l a s t c a l l ;
186 t h i s c a l l = l a s t c a l l ;
187 l a s t h e a t = l a s t c a l l ;
188 l a s t f t u = l a s t c a l l ;
189 l a s t c o n f i g = l a s t c a l l ;
190 l a s t l e d = l a s t c a l l ;
191 analogReadResolut ion (12) ;
192

193 }
194 //End Program Setup
195 //

−−−

196

197 //
−−−

198 //Program Loop
199 void loop () {
200 t h i s c a l l = m i l l i s () ; //Gets cur rent time
201 c l ear watchdog () ; //Needs to happen very f r e qu en t l y or program r e s e t s
202

203 // Tr igge r s r e gu l a r IMU logg ing
204 i f ((t h i s c a l l − last mpu) > MPU SAMPLE PERIOD && ! (ready&0x01 << 0)) {
205 debug (”MPU”) ;
206 debug (t h i s c a l l) ;
207 read mpu () ;
208 last mpu = t h i s c a l l ;
209 }
210

211 // Tr igge r s r e gu l a r l ogg ing f o r non−IMU sen so r s
212 i f ((t h i s c a l l − l a s t s l ow) > SLOW SAMPLE PERIOD && ! (ready&0x01 << 1)) {
213 debug (”SLOW”) ;
214 debug (t h i s c a l l) ;
215 read humid () ;
216 read tmp () ;
217 read therm () ;
218 r ead bat t () ;
219 read baro () ;
220

221 s l ow o f f s e t++;
222 i f (s l ow o f f s e t==SLOW SAMPLE RATE) {
223 s l ow o f f s e t −−;
224 ready |=0b0000000000000010 ;
225 update humid () ;
226 update tmp () ;
227 update therm () ;
228 update baro () ;
229 update batt () ;

51

Final Report
Space 584 W18 Team Too

230 }
231 l a s t s l ow = t h i s c a l l ;
232 }
233

234 //Attempts to read GPS whenever p o s s i b l e
235 // i f ((t h i s c a l l − l a s t g p s) > 1000 && ! (ready&0x01 << 2)) {
236 i f (GPS SERIAL . a v a i l a b l e ()) {
237 debug (”GPS”) ;
238 debug (t h i s c a l l) ;
239 read gps () ;
240

241

242 // l a s t g p s = t h i s c a l l ;
243 }
244

245 // Clear s wait f o r GPS i f more than a second has passed
246 //This i s nece s sa ry to ensure IMU samples are not too delayed
247 i f ((t h i s c a l l − l a s t g p s) > 1000) {
248 ready |=0b0000000000000100 ;
249 l a s t g p s = t h i s c a l l ;
250

251 }
252

253 i f ((t h i s c a l l − l a s t l e d) > 500) {
254 update l ed s () ;
255 l a s t l e d = t h i s c a l l ;
256 }
257

258 //Check the FTU and hea t e r s
259 i f ((t h i s c a l l − l a s t f t u) > 100) {
260 // f tu check () ;
261 heat check () ;
262 l a s t f t u = t h i s c a l l ;
263 }
264

265 //Update the c on f i g f i l e to p ro t e c t from unexpected r e s e t data l o s s
266 i f ((t h i s c a l l − l a s t c o n f i g) > 10000) {
267 wr i t e c o n f i g () ;
268 l a s t c o n f i g = t h i s c a l l ;
269 }
270

271 //Logs data to SD card and r e s e t s
272 debug (ready) ;
273 i f (ready == READY TO LOG) {
274 debug (”SD”) ;
275 debug (t h i s c a l l) ;
276 wr i t e sd () ;
277 ready = 0 ;
278

279 mpu of f se t = 0 ;
280 s l ow o f f s e t = 0 ;
281

282 memset (humid , 0 , s i z e o f (humid)) ;

52

Final Report
Space 584 W18 Team Too

283 memset (tmp , 0 , s i z e o f (tmp)) ;
284 memset (therm , 0 , s i z e o f (therm)) ;
285 memset (batt , 0 , s i z e o f (batt)) ;
286 memset (baro , 0 , s i z e o f (baro)) ;
287 }
288

289 }
290 //End Program Loop
291 //

−−−

292

293 //
−−−

294 //Program I n i t i a l i z a t i o n
295 void i n i t s p i () {
296 /∗
297 i n i t s p i ()
298 This func t i on s t a r t s the SPI bus and s e t s chip s e l e c t s
299 ∗/
300 SPI . begin () ;
301 pinMode (BARO SS PIN , OUTPUT) ;
302 d i g i t a lWr i t e (BARO SS PIN , HIGH) ;
303 pinMode (SD SS PIN , OUTPUT) ;
304 d i g i t a lWr i t e (SD SS PIN , HIGH) ;
305 pinMode (MPU SS PIN , OUTPUT) ;
306 d i g i t a lWr i t e (MPU SS PIN , HIGH) ;
307 pinMode (RADIO SS PIN , OUTPUT) ;
308 d i g i t a lWr i t e (RADIO SS PIN , HIGH) ;
309

310 }
311

312 void init mpu () {
313 /∗
314 in i t mpu ()
315 This func t i on loads c on f i g in fo rmat ion to the IMU and
316 runs an i n t e r n a l c a l i b r a t i o n
317 ∗/
318 mpu. i n i t (t rue) ;
319 mpu. s e t a c c s c a l e (BITS FS 4G) ;
320 mpu. s e t g y r o s c a l e (BITS FS 2000DPS) ;
321 mpu. c a l i b a c c () ;
322 mpu. ca l ib mag () ;
323 }
324

325 void i n i t g p s () {
326 /∗
327 i n i t g p s ()
328 This func t i on s e t s up the UART S e r i a l bus f o r c o l l e c t i n g GPS data
329 ∗/
330 GPS SERIAL . begin (9600) ;
331 }

53

Final Report
Space 584 W18 Team Too

332

333 void in i t humid () {
334 /∗
335 in i t humid ()
336 This func t i on i n i t i a l i z e s the humidity s enso r
337 ∗/
338 hdc1080 . begin (0 x40) ;
339 }
340

341

342

343 void i n i t b a r o () {
344 /∗
345 i n i t b a r o ()
346 This func t i on s e t s up the barometer and loads c on f i gu r a t i on in fo rmat ion
347 ∗/
348 SPI . beg inTransact ion (SPISet t ings (BARO SPI CLOCK, MSBFIRST, SPI MODE0)) ;
349 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;
350 SPI . t r a n s f e r (BARO R) ;
351 delay (5) ;
352 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
353 delay (5) ;
354

355 u i n t 8 t a = 0 ;
356 u i n t 8 t b = 0 ;
357 f o r (u i n t 8 t i = 0 ; i < 8 ; i++){
358

359 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;
360 SPI . t r a n s f e r (BAROPROMREAD | ((0 b111&i)<<1)) ;
361 a = SPI . t r a n s f e r (0 x00) ;
362 b = SPI . t r a n s f e r (0 x00) ;
363 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
364 baro prom [i] = (a<<8) | b ;
365 delay (10) ;
366 }
367 SPI . endTransact ion () ;
368 }
369

370 void in i t tmp () {
371 /∗
372 i n i t tmp ()
373 This func t i on s e t s up the shutdown pin f o r the TMP36
374 ∗/
375 pinMode (TMPNSHDN, OUTPUT) ;
376 }
377

378 void i n i t s d () {
379 /∗
380 i n i t s d ()
381 This func t i on s e t s up the log f i l e on the SD card
382 ∗/
383 u in t 32 t bu f f [4] = {0x88888888 , 0x88888888 , 0x88888888 , 0x88888888 } ;
384 s d s t a tu s = sd . begin (SD SS PIN , SD SCK MHZ(SD SPI CLOCK)) ;

54

Final Report
Space 584 W18 Team Too

385 l o g f i l e . open (LOGFILE NAME, O CREAT | OAPPEND | O WRITE) ;
386 l o g f i l e . wr i t e (buf f , s i z e o f (bu f f)) ;
387 l o g f i l e . c l o s e () ;
388 }
389

390 void i n i t r a d i o () {
391 //TODO
392 /∗
393 i n i t r a d i o ()
394 This func t i on i n i t i a l i z e s the rad io f o r t r a n s c e i v e r f u n c t i o n a l i t y
395 ∗/
396 delay (100) ;
397 }
398

399

400 void i n i t c o n f i g () {
401 /∗
402 i n i t c o n f i g ()
403 This func t i on s e t s up the c on f i g f i l e on the SD card
404 ∗/
405 #i f d e f CONFIG POR
406 c o n f i g f i l e . open (CONFIG FILE NAME, O READ) ;
407 u in t 32 t l en = c o n f i g f i l e . a v a i l a b l e () ;
408 c o n f i g f i l e . s eekSet (len−s i z e o f (c o n f i g l o g)) ;
409 u i n t 8 t ∗ bu f f = (u i n t 8 t ∗) &con f i g ;
410 f o r (u i n t 32 t i= 0 ; i< s i z e o f (c o n f i g l o g) ; i++)
411 {
412 i f (c o n f i g f i l e . a v a i l a b l e ())
413 {
414 ∗(bu f f + i) = c o n f i g f i l e . read () ;
415 }
416 }
417 c o n f i g f i l e . c l o s e () ;
418 #end i f
419 }
420

421

422

423 void i n i t r t c () {
424 //TODO read from con f i g f i l e i n s t ead o f s t a t i c read
425 /∗
426 i n i t r t c ()
427 This func t i on i n i t i a l i z e s the bu i l t in r ea l−time c l o ck
428 ∗/
429 r t c . begin () ;
430 r t c . setTime (NOWHOURS, NOWMINUTES, NOWSECONDS) ;
431 r t c . setDate (NOWDAY, NOWMONTH, NOWYEAR) ;
432

433 // Sets an alarm to t r i g g e r a f t e r two hours to dr iv e FTU con t r o l
434 r t c . setAlarmTime (NOWHOURS+2,NOWMINUTES,NOWSECONDS) ;
435 r t c . enableAlarm (r t c .MATCHHHMMSS) ;
436

437 r t c . a t t a ch In t e r rup t (pan i c f t u) ;

55

Final Report
Space 584 W18 Team Too

438

439 }
440

441

442 void i n i t l e d s () {
443 /∗
444 i n i t l e d s ()
445 This func t i on s e t s the pin d i r e c t i o n f o r LED pins
446 ∗/
447 pinMode (LED1 PIN ,OUTPUT) ;
448 pinMode (LED2 PIN ,OUTPUT) ;
449 pinMode (LED3 PIN ,OUTPUT) ;
450 pinMode (LED4 PIN ,OUTPUT) ;
451

452 d i g i t a lWr i t e (LED1 PIN , LOW) ;
453 d i g i t a lWr i t e (LED2 PIN , LOW) ;
454 d i g i t a lWr i t e (LED3 PIN , LOW) ;
455 d i g i t a lWr i t e (LED4 PIN , LOW) ;
456 }
457

458 void i n i t f t u () {
459 /∗
460 i n i t f t u ()
461 This func t i on s e t s pin d i r e c t i o n f o r the FTU FET
462 ∗/
463 pinMode (FTU PIN ,OUTPUT) ;
464 d i g i t a lWr i t e (FTU PIN , LOW) ;
465 }
466

467 void i n i t h e a t e r () {
468 /∗
469 i n i t h e a t e r ()
470 Sets pin mode f o r the heater FET
471 ∗/
472 pinMode (HEAT PIN,OUTPUT) ;
473 d i g i t a lWr i t e (HEAT PIN,LOW) ;
474 }
475

476 void in i t watchdog () {
477 /∗
478 i n i t watchdog ()
479 This func t i on enab l e s the i n t e r n a l watchdog t imer
480 A watchdog t imer w i l l r e s e t the m i c r o c on t r o l l e r i f i t i s not c l e a r ed

r e gu l a r l y
481 This g ive the program a hardware mechanism o f r e s e t i n g in the event o f a

c ra she s
482 This watchdog i s s e t to r e s e t the m i c r o c on t r o l l e r i f i t i s not c l e a r ed

every 8 seconds
483 Code i s pu l l ed from an old MASA pro j e c t
484 ∗/
485 GCLK−>GENDIV. reg = GCLK GENDIV ID(2) | GCLK GENDIV DIV(4) ;
486

487 GCLK−>GENCTRL. reg = GCLK GENCTRL ID(2) | GCLKGENCTRLGENEN |

56

Final Report
Space 584 W18 Team Too

GCLK GENCTRL SRC OSCULP32K | GCLK GENCTRL DIVSEL;
488

489 whi le (GCLK−>STATUS. b i t .SYNCBUSY) ;
490

491 GCLK−>CLKCTRL. reg = GCLK CLKCTRL ID WDT | GCLK CLKCTRL CLKEN |
GCLK CLKCTRL GEN GCLK2;

492

493 WDT−>CTRL. reg = 0 ; // Disab le watchdog f o r c on f i g
494 whi le (WDT−>STATUS. b i t .SYNCBUSY) ;
495

496 WDT−>INTENCLR. b i t .EW = 1 ; // Disab le e a r l y warning i n t e r r up t
497 WDT−>CONFIG. b i t .PER = 0xA; // Set per iod (8192ms) f o r chip r e s e t
498 WDT−>CTRL. b i t .WEN = 0 ; // Disab le window mode
499 whi le (WDT−>STATUS. b i t .SYNCBUSY) ; // Sync CTRL wr i t e
500

501 WDT−>CLEAR. reg = WDTCLEAR CLEARKEY;
502 whi le (WDT−>STATUS. b i t .SYNCBUSY) ;
503

504 WDT−>CTRL. reg = WDT−>CTRL. reg | WDTCTRL ENABLE;
505 whi le (WDT−>STATUS. b i t .SYNCBUSY) ;
506

507 }
508

509 //End Program I n i t i a l i z a t i o n
510 //

−−−

511

512 //
−−−

513 //Looping Functions
514 void c lear watchdog () {
515 /∗
516 c l ear watchdog ()
517 This func t i on c l e a r s the watchdog t imer countdown
518 I t must be c a l l e d more f r e quen t l y than the watchdog timeout
519 ∗/
520 WDT−>CLEAR. reg = WDTCLEAR CLEARKEY;
521 whi le (WDT−>STATUS. b i t .SYNCBUSY) ;
522 }
523

524 void read mpu () {
525 /∗
526 read mpu ()
527 This func t i on reads measurements from the MPU9250 IMU.
528 The l i b r a r y c a l l s t o r e s the measurements in an i n t e r n a l l i b r a r y s t r u c tu r e
529 Measurements are taken from l i b r a r y s t r u c tu r e and moved in to l ogg ing

s t r u c tu r e
530 Cal led at the IMU sampling f requency
531

532 Measurements are read over the SPI bus
533

57

Final Report
Space 584 W18 Team Too

534 The measurements are converted from binary data to analog data in the
l i b r a r y

535 Analog f l o a t i n g po int data i s logged in to the data l ogg ing s t r u c tu r e
536 ∗/
537 mpu. r e a d a l l () ;
538

539 //ax , ay , az (g)
540 data .mpu [0] [mpu of f s e t] = mpu. a c c e l d a t a [0] ;
541 data .mpu [1] [mpu of f s e t] = mpu. a c c e l d a t a [1] ;
542 data .mpu [2] [mpu of f s e t] = mpu. a c c e l d a t a [2] ;
543

544 //gx , gy , gz (deg/ s)
545 data .mpu [3] [mpu of f s e t] = mpu. gyro data [0] ;
546 data .mpu [4] [mpu of f s e t] = mpu. gyro data [1] ;
547 data .mpu [5] [mpu of f s e t] = mpu. gyro data [2] ;
548

549 //mx,my,mz (uT)
550 data .mpu [6] [mpu of f s e t] = mpu. mag data [0] ;
551 data .mpu [7] [mpu of f s e t] = mpu. mag data [1] ;
552 data .mpu [8] [mpu of f s e t] = mpu. mag data [2] ;
553

554 // time (ms)
555 data .mpu [9] [mpu of f s e t] = t h i s c a l l ;
556

557 // Increments the bu f f e r po inter , checks i f a l l data logged
558 mpu of f se t++;
559 i f (mpu of f s e t==MPU SAMPLE RATE) {
560 mpu of fset−−;
561 ready |=0b0000000000000001 ;
562 }
563 }
564

565

566 void read humid () {
567 /∗
568 read humid ()
569 This func t i on reads from the HDC1080 humidity s enso r
570 I t r eque s t s measurements over the I2C bus
571 Co l l e c t ed measurements are p laced in the slow sample bu f f e r
572 ∗/
573 humid [s l ow o f f s e t] = hdc1080 . readHumidity () ;
574 }
575

576 void read tmp () {
577 /∗
578 read tmp ()
579 This func t i on reads from the TMP36 on board temperature s enso r
580 I t enab l e s the sensor , wa i t s f o r i t to power up , and then samples from

the ADC
581

582 Enabling and d i s ab l i n g the senso r i s a way to l im i t s e l f −heat ing
583

584 Co l l e c t ed d i g i t a l measurements are p laced in the slow sample bu f f e r

58

Final Report
Space 584 W18 Team Too

585 ∗/
586 d i g i t a lWr i t e (TMPNSHDN,HIGH) ;
587 delayMicroseconds (150) ;
588 tmp [s l ow o f f s e t] = analogRead (TMP ADC PIN) ;
589 d i g i t a lWr i t e (TMPNSHDN,LOW) ;
590 }
591

592 void read therm () {
593 /∗
594 read therm ()
595 This func t i on reads from the the rmi s to r vo l tage d i v i d e r
596

597 Co l l e c t ed d i g i t a l measurements are p laced in the slow sample bu f f e r
598 ∗/
599 therm [s l ow o f f s e t] = analogRead (THERM ADC PIN) ;
600 }
601

602 void read bat t () {
603 /∗
604 r ead bat t ()
605 This func t i on reads from the batte ry vo l tage d i v i d e r
606

607 Co l l e c t ed d i g i t a l measurements are p laced in the slow sample bu f f e r
608 ∗/
609 batt [s l ow o f f s e t] = analogRead (BATT ADC PIN) ;
610 }
611

612 void read baro () {
613 /∗
614 read baro ()
615 This func t i on reads measurements from the MS5607 barometer .
616 The l i b r a r y s t o r e s the measurements in the slow sample bu f f e r
617

618 Measurements are read over the SPI bus
619

620 The measurements are converted from binary data to analog data
621 Analog f l o a t i n g po int data i s logged in to the slow bu f f e r .
622

623 Formula f o r conver s i on i s found in the datasheet
624 http ://www. te . com/commerce/DocumentDelivery/DDEController ?Action=s r ch r t r v

&DocNm=MS5607−02BA03&DocType=Data+Sheet&DocLang=Engl i sh
625 ∗/
626

627 // Co l l e c t the raw d i g i t a l p r e s su r e va lue
628 u i n t 8 t a = 0 ;
629 u i n t 8 t b = 0 ;
630 u i n t 8 t c = 0 ;
631 SPI . beg inTransact ion (SPISet t ings (BARO SPI CLOCK, MSBFIRST, SPI MODE0)) ;
632 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;
633 SPI . t r a n s f e r (BARO CONVERT D1) ;
634 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
635 delay (10) ;
636 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;

59

Final Report
Space 584 W18 Team Too

637 SPI . t r a n s f e r (0 x00) ;
638 a = SPI . t r a n s f e r (0 x00) ;
639 b = SPI . t r a n s f e r (0 x00) ;
640 c = SPI . t r a n s f e r (0 x00) ;
641 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
642 u in t 32 t r e ad p r e s su r e = (a<<16) | (b<<8) | c ;
643

644 // Ca l cu la t e the raw d i g i t a l i n t e r n a l temperature va lue
645 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;
646 SPI . t r a n s f e r (BARO CONVERT D2) ;
647 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
648 delay (10) ;
649 d i g i t a lWr i t e (BARO SS PIN ,LOW) ;
650 SPI . t r a n s f e r (0 x00) ;
651 a = SPI . t r a n s f e r (0 x00) ;
652 b = SPI . t r a n s f e r (0 x00) ;
653 c = SPI . t r a n s f e r (0 x00) ;
654 d i g i t a lWr i t e (BARO SS PIN ,HIGH) ;
655

656 u in t 32 t read temp = (a<<16) | (b<<8) | c ;
657

658 //Runs the magic formula in the datasheet
659 //Beware i f re implementing l a t e r , parenthese s are extremely important

here
660 i n t 3 2 t dT = read temp − (baro prom [5] ∗ pow(2 , 8)) ;
661

662 i n t 3 2 t temp = 2000 + dT ∗ (baro prom [6] / pow(2 ,23)) ;
663

664 f l o a t 6 4 t temp c = temp /100 . 0 ;
665

666 i n t 6 4 t o f f = baro prom [2] ∗ pow(2 ,17) + (baro prom [4] ∗dT) /pow(2 , 6) ;
667

668 i n t 6 4 t sens = baro prom [1] ∗ pow(2 ,16) + (baro prom [3] ∗ dT) /pow(2 , 7) ;
669

670 i n t 6 4 t p = (r ead p r e s su r e ∗ (sens /pow(2 ,21)) − o f f) /pow(2 ,15) ;
671

672 f l o a t 6 4 t p mbar = p /100 . 0 ;
673

674 baro [s l ow o f f s e t] = (f l o a t 3 2 t) p mbar ;
675 }
676

677 void update humid () {
678 /∗
679 update humid ()
680

681 This func t i on averages the c o l l e c t e d humidity data
682 Runs a moving average f i l t e r on the humidity slow bu f f e r
683 Puts the average in to the l ogg ing s t r u c tu r e
684 ∗/
685 f l o a t 3 2 t avg = 0 ;
686

687 f o r (u i n t 8 t i = 0 ; i < SLOW SAMPLE RATE; i++){
688 avg+=humid [i] ;

60

Final Report
Space 584 W18 Team Too

689 }
690 avg/=(f l o a t 3 2 t)SLOW SAMPLE RATE;
691

692 data . humid = avg ;
693

694 }
695

696

697 void update tmp () {
698 /∗
699 update tmp ()
700

701 This func t i on averages the c o l l e c t e d TMP36 temperature data
702 Runs a moving average f i l t e r on the TMP36 slow bu f f e r
703

704 Converts the average in to degree s C
705

706 Puts the average in to the l ogg ing s t r u c tu r e
707 ∗/
708 f l o a t 3 2 t avg = 0 ;
709

710 f o r (u i n t 8 t i = 0 ; i < SLOW SAMPLE RATE; i++){
711 avg+=tmp [i] ;
712 }
713 avg=avg /((f l o a t 3 2 t)SLOW SAMPLE RATE) ;
714 avg = (avg ∗ VDDANA / ((f l o a t 3 2 t)MAX RES)) ∗ 100 .0 − 5 0 . 0 ;
715 data . tmp = avg ;
716 l a s t t emp = avg ;
717 }
718

719

720 void update therm () {
721 /∗
722 update therm ()
723

724 This func t i on averages the c o l l e c t e d the rmi s to r temperature data
725 Runs a moving average f i l t e r on the the rmi s to r temperature slow bu f f e r
726

727 Converts the average in to degree s C
728

729 Puts the average in to the l ogg ing s t r u c tu r e
730 ∗/
731 f l o a t 3 2 t avg = 0 ;
732

733 f o r (u i n t 8 t i = 0 ; i < SLOW SAMPLE RATE; i++){
734 avg+=therm [i] ;
735 }
736 avg=avg /((f l o a t 3 2 t)SLOW SAMPLE RATE) ;
737 f l o a t 3 2 t v o l t s = (avg ∗ VDDANA / ((f l o a t 3 2 t)MAX RES)) ;
738

739 f l o a t 3 2 t r e s = (v o l t s ∗ R 1) /(VDDANA−vo l t s) ;
740

741 f l o a t 3 2 t t = BETA / log (r e s / R INF) − 273 . 1 5 ;

61

Final Report
Space 584 W18 Team Too

742

743 l a s t t emp = t ;
744

745 data . therm = t ;
746

747 }
748

749 void update batt () {
750 /∗
751 update batt ()
752

753 This func t i on averages the c o l l e c t e d batte ry data
754 Runs a moving average f i l t e r on the humidity slow bu f f e r
755

756 Converts the average in to v o l t s
757

758 Puts the average in to the l ogg ing s t r u c tu r e
759 ∗/
760 f l o a t 3 2 t avg = 0 ;
761

762 f o r (u i n t 8 t i = 0 ; i < SLOW SAMPLE RATE; i++){
763 avg+=batt [i] ;
764 }
765 avg=avg /((f l o a t 3 2 t)SLOW SAMPLE RATE) ;
766 f l o a t 3 2 t v o l t s = (avg ∗ VDDANA / ((f l o a t 3 2 t)MAX RES)) ;
767 f l o a t 3 2 t b = vo l t s ∗ (10000 + 20000) /(10000) ;
768 data . batt = b ;
769

770 }
771

772 void update baro () {
773 /∗
774 update baro ()
775

776 This func t i on averages the c o l l e c t e d barometer p r e s su r e data
777 Runs a moving average f i l t e r on the barometer slow bu f f e r
778 Puts the average in to the l ogg ing s t r u c tu r e
779 ∗/
780 f l o a t 3 2 t avg = 0 ;
781

782 f o r (u i n t 8 t i = 0 ; i < SLOW SAMPLE RATE; i++){
783 avg+=baro [i] ;
784 }
785 avg=avg /((f l o a t)SLOW SAMPLE RATE) ;
786

787 data . baro = avg ;
788

789 }
790

791 void read gps () {
792 /∗
793 read gps ()
794

62

Final Report
Space 584 W18 Team Too

795 This func t i on attempts to p o l l the GPS f o r cur rent data
796

797 I t reads un t i l data i s found . I f a f u l l message i s found , i t pa r s e s the
NMEA

798 data and puts i t i n to an i n t e r n a l l i b r a r y s t r u c tu r e .
799

800 I f data i s va l id , i t i s added to the data logg ing s t r u c tu r e
801 ∗/
802

803

804 // u in t 32 t p o l l s t a r t = m i l l i s () ;
805 u i n t 8 t d i sp = 0 ;
806

807 whi le (GPS SERIAL . a v a i l a b l e ())
808 di sp = gps . encode (GPS SERIAL . read ()) ;
809

810 i f (d i sp) {
811 ready |=0b0000000000000100 ;
812 l a s t g p s = m i l l i s () ;
813 i f (gps . s a t e l l i t e s . i sVa l i d ()) {
814 data . gps [0] = gps . s a t e l l i t e s . va lue () ;
815 } e l s e data . gps [0] = 0 ;
816

817 i f (gps . l o c a t i o n . i sVa l i d ()) {
818 data . gps [1] = gps . l o c a t i o n . l a t () ;
819

820 data . gps [2] = gps . l o c a t i o n . lng () ;
821 } e l s e {
822 data . gps [1] = 0 ;
823 data . gps [2] = 0 ;
824 }
825

826 i f (gps . a l t i t u d e . i sVa l i d ()) {
827 data . gps [3] = gps . a l t i t u d e . f e e t () ;
828 } e l s e data . gps [3] = 0 ;
829

830 i f (gps . speed . i sVa l i d ()) {
831 data . gps [4] = gps . speed .mph() ;
832 } e l s e data . gps [4] = 0 ;
833

834 i f (gps . course . i sVa l i d ()) {
835 data . gps [5] = gps . course . deg () ;
836 } e l s e data . gps [5] = 0 ;
837 }
838 }
839

840

841

842 void wr i t e sd () {
843 /∗
844 wr i t e sd ()
845

846 This func t i on wr i t e s the data logg ing s t r u c tu r e to the SD card

63

Final Report
Space 584 W18 Team Too

847 ∗/
848 data . s o f = 0xAAAAAAAA;
849 data . e o f = 0xCCCCCCCC;
850 data . l ength = s i z e o f (data) − s i z e o f (data . s o f) − s i z e o f (data . e o f) ;
851 data . time = t h i s c a l l ;
852 data . f t u = f t u s t a t e ;
853 data . heat = hea t s t a t e 1 ;
854 u i n t 8 t ∗ bu f f = (u i n t 8 t ∗) &data ;
855

856 u in t 32 t c r c = crc32c (0 , bu f f+s i z e o f (data . s o f) , s i z e o f (data) − s i z e o f (
data . e o f) − s i z e o f (data . c r c) − s i z e o f (data . s o f)) ;

857

858 data . c r c = crc ;
859

860 l o g f i l e . open (LOGFILE NAME, O APPEND | O WRITE) ;
861 l o g f i l e . wr i t e (buf f , s i z e o f (data)) ;
862

863 l o g f i l e . c l o s e () ;
864

865 memset (buf f , 0 , s i z e o f (bu f f)) ;
866 }
867

868 void w r i t e c o n f i g () {
869 /∗
870 wr i t e c o n f i g ()
871

872 This func t i on wr i t e to the SD card us ing the c on f i g data s t r u c tu r e
873 ∗/
874 #i f d e f CONFIG POR
875 c o n f i g f i l e . open (CONFIG FILE NAME, O CREAT | O WRITE | OAPPEND) ;
876 c on f i g . s o f = 0xFEFEFEFE;
877 c on f i g . e o f = 0x8A8A8A8A ;
878 c on f i g . l ength = s i z e o f (c on f i g) ;
879 c on f i g . time = t h i s c a l l ;
880 c on f i g . r t c s t a r t h o u r = 12 ;
881 c on f i g . r t c s t a r t m i n = 0 ;
882 c on f i g . r t c s t a r t s e c = 0 ;
883

884 c on f i g . r t c hour = r t c . getHours () ;
885 c on f i g . r t c s t a r t m i n = r t c . getMinutes () ;
886 c on f i g . r t c s t a r t s e c = r t c . getSeconds () ;
887

888 c on f i g . t ime t o f t u = TWOHOURSMS − t h i s c a l l ;
889 c on f i g . f t u = f t u s t a t e ;
890 c on f i g . heat = hea t s t a t e 1 ;
891

892 u i n t 8 t ∗ bu f f = (u i n t 8 t ∗) &con f i g ;
893 u in t 32 t c r c = crc32c (0 , bu f f+s i z e o f (c on f i g . s o f) , s i z e o f (c on f i g) −

s i z e o f (c on f i g . e o f) − s i z e o f (c on f i g . c r c) − s i z e o f (c on f i g . s o f)) ;
894 c on f i g . c r c = crc ;
895 c o n f i g f i l e . wr i t e (buf f , s i z e o f (c on f i g)) ;
896

897 c o n f i g f i l e . c l o s e () ;

64

Final Report
Space 584 W18 Team Too

898 memset (buf f , 0 , s i z e o f (c on f i g)) ;
899 #end i f
900 }
901

902 // https : // s tackove r f l ow . com/ que s t i on s /27939882/ fa s t−crc−a lgor i thm
903 u in t 32 t crc32c (u i n t 32 t crc , const unsigned char ∗buf , s i z e t l en) {
904 /∗
905 c rc32c ()
906

907 This f u c t i on c a l c u l a t e s a CRC32 value from the given bu f f e r
908

909 A CRC32 value i s a 32−b i t checksum value that w i l l be somewhat unique to
a s e t o f data

910 This can be used to ensure that a data packet i s v a l i d l a t e r
911

912 ∗/
913 i n t k ;
914

915 c r c = ˜ crc ;
916 whi le (len−−) {
917 c r c ˆ= ∗buf++;
918 f o r (k = 0 ; k < 8 ; k++)
919 c r c = crc & 1 ? (c r c >> 1) ˆ POLY : c rc >> 1 ;
920 }
921 re turn ˜ c rc ;
922 }
923

924 void update l ed s () {
925 d i g i t a lWr i t e (LED1 PIN , HIGH) ; //Write Power LED High
926

927 d i g i t a lWr i t e (LED2 PIN , ! d i g i t a lRead (LED2 PIN)) ;
928

929 d i g i t a lWr i t e (LED3 PIN , HIGH) ; //Write Power LED High
930

931 d i g i t a lWr i t e (LED4 PIN , ! d i g i t a lRead (LED4 PIN)) ;
932 }
933

934 //End Looping Functions
935 //

−−−

936

937 //
−−−

938 //Program State Monitors
939 void pan i c f t u () {
940 /∗
941 pan i c f t u ()
942

943 This func t i on i s the i n t e r r up t as s i gned to the rea l−time c l o ck alarm
944 After two hours have passed , i t w i l l t r i g g e r the FTU
945 ∗/

65

Final Report
Space 584 W18 Team Too

946 f t u s t a t e = 1 ;
947 }
948

949 void f tu check () {
950 /∗
951 f t u check ()
952

953 This func t i on checks the time remaining from a m i l l i s counter , and a l s o
954 updates the cur rent s t a t e o f the FTU t r i g g e r pin
955 ∗/
956 i f (t h i s c a l l > f tu ms remain) {
957 i f (f t u s t a r t == 0) {
958 f t u s t a r t = t h i s c a l l ;
959 }
960 i f (t h i s c a l l − f t u s t a r t > ONE MIN MS) {
961 f t u s t a t e = 0 ;
962 } e l s e {
963 f t u s t a t e = 1 ;
964 }
965 }
966 d i g i t a lWr i t e (FTU PIN , f t u s t a t e) ;
967 }
968

969

970 void heat check () {
971 /∗
972 heat check ()
973

974 This func t i on c on t r o l s the heate r
975

976 I f in FEEDBACKHEAT mode , i t w i l l t ry to dr iv e the i n t e r n a l temperature
to TEMP SETPOINT

977 I f not in FEEDBACKHEAT, i t w i l l be on f o r HEAT TIME ON ms and o f f f o r
HEAT TIME OFF ms

978

979 ∗/
980 s t a t i c u i n t 8 t h e a t e r s t a t e = 0 ;
981 i f (t h i s c a l l − l a s t h e a t > HEAT PERIOD) {
982 h e a t e r s t a t e = (h e a t e r s t a t e +1)%4;
983 switch (h e a t e r s t a t e) {
984 case 0 :
985 h e a t s t a t e 1 = 0 ;
986 h e a t s t a t e 2 = 0 ;
987 break ;
988 case 1 :
989 h e a t s t a t e 1 = 1 ;
990 h e a t s t a t e 2 = 0 ;
991 break ;
992 case 2 :
993 h e a t s t a t e 1 = 0 ;
994 h e a t s t a t e 2 = 0 ;
995 break ;
996 case 3 :

66

Final Report
Space 584 W18 Team Too

997 h e a t s t a t e 1 = 0 ;
998 h e a t s t a t e 2 = 1 ;
999 break ;

1000 de f au l t :
1001 /∗ t h i s should be impos s ib l e ∗/
1002 break ;
1003 }
1004 l a s t h e a t = t h i s c a l l ;
1005 }
1006 d i g i t a lWr i t e (HEAT PIN, h e a t s t a t e 1) ;
1007 d i g i t a lWr i t e (FTU PIN , h e a t s t a t e 2) ;
1008 }
1009

1010 //End Program State Monitors
1011 //

−−−

D.3 Header File

1 /∗
2 f l i g h t c o n f i g . h
3 This f i l e conta in s cons tant s f o r the f l i g h t program
4 ∗/
5

6 #i f n d e f CONFIG
7 #de f i n e CONFIG
8

9 //Compilation mod i f i e r s −−−−−−−−−−−−−−−−−−−−−−
10 // enab l e s debug () macro
11 //#de f i n e SERIAL DEBUG
12

13 // enable r e s e t c on f i g f i l e
14 #de f i n e CONFIG POR
15

16 // t o g g l e s feedback heat ing or time based heat ing
17 //#de f i n e FEEDBACKHEAT
18 //−−
19

20 //Pin Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 //LEDs
23 //1 and 2 are on board , 3 and 4 are ex t e rna l
24 #de f i n e LED1 PIN 6
25 #de f i n e LED2 PIN 7
26 #de f i n e LED3 PIN 12
27 #de f i n e LED4 PIN 10
28

29 //SPI Chip s e l e c t p ins
30 #de f i n e BARO SS PIN A5
31 #de f i n e SD SS PIN 5
32 #de f i n e MPU SS PIN 27
33 #de f i n e RADIO SS PIN 26

67

Final Report
Space 584 W18 Team Too

34

35 //Analog read p ins
36 #de f i n e TMP ADC PIN A1
37 #de f i n e THERM ADC PIN A3
38 #de f i n e BATT ADC PIN A2
39

40 //Misc p ins
41 #de f i n e FTU PIN 38
42 #de f i n e HEAT PIN 2
43 #de f i n e TMPNSHDN 9
44 #de f i n e RADIO INT A0
45 //−−
46

47 //Generic RTC s t a r t i n g time i f no c on f i g −−−−−
48 #de f i n e NOWHOURS 12
49 #de f i n e NOWMINUTES 00
50 #de f i n e NOWSECONDS 00
51 #de f i n e NOWDAY 24
52 #de f i n e NOWMONTH 02
53 #de f i n e NOWYEAR 18
54 //−−−
55

56 // S e r i a l Objects −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57 #de f i n e GPS SERIAL S e r i a l
58 #de f i n e TRACKUINO SERIAL S e r i a l 1
59 //−−−
60

61 //Max SPI Clock Speeds −−−−−−−−−−−−−−−−−−−−−−−−
62 #de f i n e MPU SPI CLOCK 24000000
63 #de f i n e SD SPI CLOCK 24000000
64 #de f i n e BARO SPI CLOCK 20000000
65 #de f i n e RADIO SPI CLOCK 24000000
66 //−−−
67

68 // Sensor Sample Rates −−−−−−−−−−−−−−−−−−−−−−−−−
69 #de f i n e MPU SAMPLE RATE 100 //Hz
70 #de f i n e MPU SAMPLE PERIOD 10 //ms
71

72 #de f i n e HUMID SAMPLE RATE 5
73 #de f i n e TMP SAMPLE RATE 5
74 #de f i n e THERMSAMPLERATE 5
75 #de f i n e BARO SAMPLE RATE 5
76 #de f i n e BATT SAMPLE RATE 5
77

78 #de f i n e SLOW SAMPLE RATE 5
79 #de f i n e SLOW SAMPLE PERIOD 200 //ms
80 //−−−
81

82 //Keep typing convent ion constant
83 #de f i n e f l o a t 3 2 t f l o a t
84 #de f i n e f l o a t 6 4 t double
85

86

68

Final Report
Space 584 W18 Team Too

87 //Barometer Control Constants −−−−−−−−−−−−−−−−−
88 #de f i n e BARO R 0x1E
89

90 #de f i n e BARO CONVERT D1 0x48
91 #de f i n e BARO CONVERT D2 0x58
92

93 #de f i n e BAROADCREAD 0x00
94 #de f i n e BAROPROMREAD 0b10100000
95 //−−−
96

97 //Logging and con f i g cons tant s −−−−−−−−−−−−−−−−
98 // Sets o f f l a g s that t r i g g e r l og
99 #de f i n e READY TO LOG 0b0000000000000111

100 //Logging f i l e name
101 #de f i n e LOGFILE NAME ”blog0 . dat”
102 //Config f i l e name
103 #de f i n e CONFIG FILE NAME ” con f i g . dat”
104 //−−−
105

106 //Analog read senso r cons tant s −−−−−−−−−−−−−−−−
107 //Analog power r a i l vo l t age
108 #de f i n e VDDANA 3.3F
109 //Twelve b i t ADC r e s o l u t i o n
110 #de f i n e MAX RES 4095
111 //Thermistor Constants
112 #de f i n e RTHERMNOM 10000.0F
113 #de f i n e R 1 100000.0F
114 #de f i n e BETA 3950.0F
115 #de f i n e TEMPNOM 298.15F
116 #de f i n e R INF 0.017632269789291F
117 //−−−
118

119 //CRC determinat ion constant −−−−−−−−−−−−−−−−−−
120

121 /∗ CRC−32C (iSCSI) polynomial in r eve r s ed b i t order . ∗/
122 #de f i n e POLY 0x82f63b78
123

124 /∗ CRC−32 (Ethernet , ZIP , e t c .) polynomial in r eve r s ed b i t order . ∗/
125 /∗ #de f i n e POLY 0xedb88320 ∗/
126

127 //−−−
128

129 //FTU and Heater Constants −−−−−−−−−−−−−−−−−−−−
130 #de f i n e TWOHOURSMS 7 .2 e+6 //ms
131 #de f i n e FIVE MIN MS 3e5 //ms
132 #de f i n e ONE MIN MS 60000 //ms
133

134 #de f i n e TEMP SETPOINT 25 .0F //deg C
135 #de f i n e HEAT TIME ON 30000 //ms
136 #de f i n e HEAT TIME OFF 30000 //ms
137 #de f i n e HEAT PERIOD 15000 //ms
138 //−−−
139

69

Final Report
Space 584 W18 Team Too

140 // St ruc tu r e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
141 // St ruc ture to o rgan i z e data to wr i t e to SD card
142 typede f s t r u c t da t a t o l o g {
143 u in t 32 t s o f ;
144 u in t 32 t l ength ;
145

146 u in t 32 t time ;
147

148 //ax , ay , az (g) , gx , gy , gz (deg/ s) ,mx,my,mz(uT) , time (ms)
149 f l o a t 3 2 t mpu [1 0] [MPU SAMPLE RATE] ;
150 f l o a t 3 2 t humid ;
151 f l o a t 3 2 t tmp ;
152 f l o a t 3 2 t therm ;
153 f l o a t 3 2 t baro ;
154 f l o a t 3 2 t batt ;
155 // sat , l a t , long , a l t (f e e t) , v e l (mph) , c s e (deg)
156 f l o a t 3 2 t gps [6] ;
157

158 u in t 32 t f tu ;
159 u in t 32 t heat ;
160

161 u in t 32 t c r c ;
162 u in t 32 t eo f ;
163 } ;
164

165 // St ruc ture to o rgan i z e data to wr i t e to reboot l og f i l e
166 typede f s t r u c t c o n f i g l o g {
167 u in t 32 t s o f ;
168 u in t 32 t l ength ;
169

170 u in t 32 t time ;
171

172

173 u in t 32 t r t c s t a r t h o u r ;
174 u in t 32 t r t c s t a r t m i n ;
175 u in t 32 t r t c s t a r t s e c ;
176

177 u in t 32 t r t c hour ;
178 u in t 32 t rtc min ;
179 u in t 32 t r t c s e c ;
180

181 u in t 32 t t ime t o f t u ;
182

183 u in t 32 t f tu ;
184 u in t 32 t heat ;
185

186 u in t 32 t c r c ;
187 u in t 32 t eo f ;
188 } ;
189 #end i f
190 //−−−

70

Final Report
Space 584 W18 Team Too

D.4 FTU Code

1 #inc lude ” f l i g h t c o n f i g . h”
2

3 u in t 32 t f t u s t a t e = 0 ;
4 u in t 32 t t h i s c a l l ;
5 u in t 32 t l a s t c a l l ;
6 u in t 32 t l a s t f t u ;
7 u in t 32 t l a s t c o n f i g ;
8

9 u in t 32 t f t u s t a r t = 0 ;
10

11 u in t 32 t ftu ms remain = TWOHOURSMS; //Two Hours ms
12

13 // u in t 32 t f tu ms remain = 10000; //Two Hours ms
14

15 void i n i t f t u () ;
16

17 void setup () {
18 // put your setup code here , to run once :
19 i n i t f t u () ;
20 l a s t c a l l = m i l l i s () ;
21 l a s t f t u = l a s t c a l l ;
22 }
23

24 void loop () {
25 // put your main code here , to run repea t ed ly :
26 t h i s c a l l = m i l l i s () ; //Gets cur rent time
27 i f ((t h i s c a l l − l a s t f t u) > 100) {
28 l a s t f t u = t h i s c a l l ;
29 f t u check () ;
30 }
31 }
32

33

34 void i n i t f t u () {
35 /∗
36 i n i t f t u ()
37 This func t i on s e t s pin d i r e c t i o n f o r the FTU FET
38 ∗/
39 pinMode (FTU PIN ,OUTPUT) ;
40 d i g i t a lWr i t e (FTU PIN , LOW) ;
41 }
42

43 void f tu check () {
44 /∗
45 f t u check ()
46

47 This func t i on checks the time remaining from a m i l l i s counter , and a l s o
48 updates the cur rent s t a t e o f the FTU t r i g g e r pin
49 ∗/
50 i f (t h i s c a l l > f tu ms remain) {
51 i f (f t u s t a r t == 0) {

71

Final Report
Space 584 W18 Team Too

52 f t u s t a r t = t h i s c a l l ;
53 }
54 i f (t h i s c a l l − f t u s t a r t > 2∗ONE MIN MS) {
55 f t u s t a t e = 0 ;
56 } e l s e {
57 f t u s t a t e = 1 ;
58 }
59 }
60

61 d i g i t a lWr i t e (FTU PIN , f t u s t a t e) ;
62 }

72

	Introduction
	Payload Subsystems
	Communications
	Sensors
	Cameras
	GPS & Tracking
	Flight Termination Unit (FTU)
	Structures

	Mass & Power Budgets
	Mass Budget
	Power Budget

	Printed Circuit Board Design
	Flight Code
	Testing and Verification
	Calibration Tests
	Thermal Test
	Shock Test
	Endurance Test
	FTU Test
	Ground Station
	Car Chase

	Launch
	Pre-Launch Operations
	Launch Day

	Data Collected
	Flight Path
	Data Analysis

	Issues Encountered
	Communications
	PCB
	Launch

	Conclusion
	References
	Data Collected
	Printed Circuit Board
	Hardware Architecture
	Printed Circuit Board Schematic
	Printed Circuit Board Top Layer
	Printed Circuit Board Bottom Layer

	Launch SOP
	Flight Code
	Flow Diagram
	Payload Code
	Header File
	FTU Code

